doi:10.3969/j.issn.1671-5152.2011.01.003

柴油锅炉改换LPG作为燃料的可行性分析

□ 烟台市汇通燃气发展有限公司(264002)王树美 张春伟 □ 烟台新奥燃气发展有限公司(264002)张海峰 林克臻

LPG替代柴油作为锅炉燃料节能减排优势 分析

从目前市场的调查来看,很多以前投产的工业 锅炉使用的燃料都是柴油。但是随着国际原油价格的 不断攀升, 国内成品油的价格也大幅上涨, 这样使使 用柴油作为燃料的企业生产成本也不断增加。采用哪 种能源替代柴油最为合适呢? 经过科学地分析研究, LPG作为洁净能源符合目前国家倡导的节能减排的要 求,因为LPG的热值比柴油高,价格比柴油便宜,排 放的大气污染物比柴油少得多。使用柴油的锅炉,由 于柴油的纯净度问题,经常造成燃烧系统过滤网的堵 塞,需要定期进行清理;同时柴油的排烟管路也经常 性地出现堵塞现象,需要定时疏通。由于LPG属于洁 净能源,含杂质少,不存在管路堵塞的问题,在燃烧 系统的维护方面可以减少一大部分费用。从节能减 排的角度考虑,使用LPG作为燃料代替柴油是一种趋 势。同时, LPG是石油炼制过程中的副产品, 经过多 年的发展, 生产储存运输技术相当成熟, 使用方便快 捷,一次性投资少,单体储存量大,不受时间地点的 限制,远离市区的偏远用气点也可以做到供气的连续 性,可靠性大。

燃烧系统改造方法

我公司目前正在推行工业锅炉油改气业务,而且 取得了很好的效果。改造过程很简单,锅炉整体不需 变动、只需把柴油燃烧器换成LPG燃烧器、废除原来 的油路系统,安装新的燃气管路系统。这套系统的 改造只需几天的时间即可完成,而且可以生产与改造 同时进行,只需在更换燃烧器的时候进行短暂地停

投资方式

工程投资可以采用多种灵活的方式, 其实最简单 的方式就先由施工方垫资,用气单位在用气过程中, 从节省的成本中分期将工程款支付给施工方。这种付 款方式对于双方都有利。对于施工单位来说, 垫支工 程款也是对自己方案成果的一种保证, 宜于建设方对 自己方案的认可: 而对于建设方来说, 对于改造成果 不承担任何风险, 如果施工方的方案没有达到预期效 果,他们将不承担任何费用,这种结果对于建设方来 说无疑是百利而无一害的。

替代效果

实践证明,经过油改气的锅炉生产成本明显下 降,成本节省率基本在20%-30%,效果非常可观, 得到了用气单位的认可;而且LPG使用的方便灵活性 也得到了很好的体现。具体分析见实例。

柴油与LPG作为燃料的经济分析

本经济比较中,各种燃料的价格为烟台地区当前 使用价格。

5.1 LPG与柴油的比较

在用气量不大的情况下, 瓶装LPG由于其搬运机 动灵活,无需敷设地下管线,在燃气领域持久扮演相 对重要的角色。燃油较多地应用于工业用户,种类有 柴油、重油等,其中重油因其杂质多、燃烧设备维护 成本高、污染大等原因, 现已极少采用, 所以目前的 燃油还是主要采用柴油。现将LPG与柴油具体比较见 表1。

表1

项目	燃料 种类	价格	热值	单位热值 价格	比价
燃油 (气)	LPG	5.9元/kg	46.055MJ/ kg	0.128元/MJ	1
锅炉	柴油	7.0元/kg	42.6MJ/ kg	0.164元/MJ	1.281

从表1可以看出,对于用户来说,LPG与柴油相 比,LPG价格对用户具有一定的吸引力。据有关文章 介绍,目前我国LPG市场已逐步与国际接轨,基本实 现了市场化、国际化,因此,国际市场价格的变化往 往决定着我国的LPG市场的价格,一般情况下,国产 LPG价格与当地进口LPG价格同步变化、并且略低。

5.2 工业用户常用125.7kJ/h运行费用比较(满负荷 运行)

在烟台市区范围内,由于环保要求、社会的进步 和煤炭销售网点的减少,煤炭的使用已逐渐被城市工 业用户所淘汰,只是在发电领域还具有较大的规模。 由于我国的煤炭资源丰富及已有的煤炭工业相当庞 大, 在发电领域煤的发电成本仍然远低于LPG, 除非 有非常严格的环保要求, LPG才能取得主导地位。根 据专家预测,即使到2020年,煤炭在整个能源构成中 所占的比例也不会低于50%。对于烟台市城区而言, 由于LPG与煤炭在很多方面并不具备可比性,我们在 对燃料方面进行分析时, 暂不考虑煤炭的经济。

表2 工业用户常用的125.7kJ/h(满负荷)运行费用比较表

燃料种类	燃料用量	燃料价格	热值利用率	运行费用 (元/h)
柴油	29.48 kg/h	7 000元/t	80%	257.95
LPG	27.27 kg/h	5 900元/t	90%	178.77

备注: 热值利用率为锅炉的平均利用率。

综合上述, LPG作为燃烧机燃料与柴油相比, 具 有很多优点,运行成本明显下降,资源丰富,生产技 术成熟,储存运输方便,一次运输储存量大,受时间 地点的限制小, 供气稳定性强, 国际国内产量大, 价 格稳定且成下降趋势。LPG工艺系统占地面积小,一 次投入少,建设周期短,设备简单容易操作,安全方 便可靠。

实例分析

以烟台市汇通燃气改造的烟台市养管处沥青厂沥 青炒拌机组900kW热载体炉为例:

6.1 一次性投资成本

LPG供气及气化系统:采用钢瓶组(8个50kg钢 瓶)供气系统,包括厂区内管线铺设及强制气化设 备,其投资成本约为7万元。

燃烧系统: 900kW热载体炉, 配置的燃烧器热负 荷为3 760MJ、需要的投资费用为2.8万元。

设备油改气的总投资费用约为: 9.8元。

6.2 跟踪数据比较

养管处沥青厂900kW热载体炉于2009年9月4日进 行锅炉燃气系统调试,沥青养管处与汇通燃气公司派 人员连续跟踪记录,数据如下:

9月4日15:30,锅炉进行LPG燃烧器点火试运 行。燃烧器设定功率约为1 100kW, 气化间二级减压后 管道压力为10.5kPa-11kPa(燃烧器不工作时),工作 时压力为4.5kPa—5kPa,给1只50t沥青储罐加热,沥 青罐起始温度为130℃,至当日23:31时加热至155℃ 达到设定温度停机。在线50kg钢瓶6只,LPG净重 294.5kg, 共计燃烧175min, 约7h(15:30—22:22)。

假设:每小时的用气量为X,则:294.5:175=X:60, X=101kg/h。高于理论数值70kg/h。9月5、7日连续记 录, 计算数值与上面计算相近。

9月8日燃烧器供应商将燃烧器的功率调至 850kW,9月9日我们重新记录。(加热1只50t沥青 罐)见表3。

为求得真实数据9月12日又进行了记录。(加热 1只50t沥青罐),见表4。

9月12日发现,设定的燃气工作压力偏高压力 (燃烧器不工作时压力为10.5kPa—11kPa,燃烧器工 表3

序号	开机时间	停机时间	工作时间 (min)	备注
1	9: 14	9: 20	6	气化间工作 压力6kPa, 停 机 压 力 11kPa
2	9: 32	9: 38	6	
3	9: 50	9: 56	6	
4	10: 08	10: 13	5	
5	10: 25	10: 31	6	
6	10: 43	10: 49	6	在线使用 50kg钢瓶2 只净重约为 98kg。
7	11: 01	11: 07	6	
8	11: 19	11: 25	6	
9	11: 36	11: 42	6	
10	11: 54	12: 00	6	
11	12: 12	12: 18	6	
12	12: 30	12: 36	6	
13	12: 48	12: 54	6	
14	13: 06	13: 12	6	
合计			83	

设定:每小时用气量为X,则:98:83=X:60, X=71kg/h,接近理论数值。

表4

序号	开机时间	停机时间	工作时间 (min)	备注
1	7: 07	7: 13	6	气化间工作 压力6kPa, 停 机 压 力 11kPa
2	7: 19	7: 26	7	
3	7: 32	7: 45	13	
4	7: 52	7: 58	6	
5	8: 04	8: 09	5	
6	8: 17	8: 22	5	
7	8: 30	8: 35	5	
8	8: 43	8: 48	5	
9	8: 56	9: 01	5	在线使用 50kg钢瓶
10	9: 09	9: 14	5	
11	9: 22	9: 27	5	
12	9: 35	9: 41	6	2只净重约
13	9: 48	9: 54	6	为98kg。
合计			79	

设定:每小时用气量为X,则:98:79=X:60, X=74.5kg/h。

作时压力为4.5kPa—5kPa)。9月12日下午将压力调 至: 燃烧器不工作时为7.5kPa; 燃烧器工作时为 3.5 kPa。9月14日我们又进行了跟踪调试: (加热1只 50t沥青罐),见表5。

通过记录的数据计算对比:

LPG取3次记录的平均值计算: 71+74.5+69/3= 71.5kg/h, 900kW热载体炉的热负荷为3 200MJ/h,

表5

序号	开机时间	停机时间	工作时间	备注
1	7: 27	7: 36	9	
2	7: 44	7: 48	4	
3	7: 58	8: 12	14	气 化 间 工 作压力3.5 kPa, 停机 压力7.5 kPa
4	8: 18	8: 25	7	
5	8: 31	8: 38	7	
6	8: 44	8: 51	7	
7	8: 58	9: 04	6	
8	9: 11	9: 17	6	
9	9: 24	9: 30	6	在线使用
10	9: 36	9: 43	7	50kg钢瓶 2只净重约 为98kg。
11	9: 49	9: 56	7	
12	10: 02	10: 07	5	
合计			85	

设定:每小时用气量为X,则:98:85=X:60, X=69kg/h。

LPG热值为46.1MJ/kg, 0号柴油热值为40.2 MJ/kg。 则:每小时柴油的消耗量为: 80.6kg,每小时LPG的 消耗量为70.4kg。

0号柴油批发价为: 5 950元/t, LPG单价为: 5 200元/t。(价格均为当时市场价位)

LPG每小时比柴油节省(理论值):

80.6kg×5.95元/kg-70.4kg×5.2元/kg=113.5元 每小时节省: 113.5 ÷ 479.6 × 100%=23.67% 以每天工作12h计算: 113.5 × 12=1 362元。

LPG每小时比柴油节省(实测值):

80.6kg×5.95元/kg-71.5 kg×5.2元/kg=107.77元 每小时节省: 107.77 ÷ 479.6 × x100%=22.47% 以每天工作12h计算: 107.77 × 12=1 293.24元。 每年按180天工作日计算全年可节省:

1 293.24元×180=232 783.20元(按实测值计算)

从上述费用分析可以看出, LPG与柴油相比, 是 一种经济的燃料。LPG运输方便,价格便宜,经济实 惠,无需铺设大量管道,运行维护费用低,无需开口 费,一次存储量大,气源稳定,是促使企业发展,节 约成本的新的能源。

在目前国家大力提倡节能减排的背景下,采用 LPG替代柴油无疑是一种可取的降低生产成本、减少 污染物排放的能源方式。我们应该在工业用户中大力 推广这种模式,既符合企业自身降低成本的利益需 求,同时也为社会的环保事业做出了贡献。