doi:10.3969/j.issn.1671-5152.2011.10.008

降低管网运行风险, 创新施工配合管理

- 建设施工配合的全向管控机制

□ 北京市燃气集团有限责任公司第四分公司

企业基本情况

北京市燃气集团有限责任公司2009年组织机构 优化重组后,成立了五家综合区域分公司和一家高压 管网公司。始终秉承"气融万物,惠泽万家"的企业 理念,坚持以用户需求为导向,以奉献优质清洁能源 为媒介,提供安全满意的服务。"安全是魂,预防在 先"是集团公司安全管理工作的基本原则。

运行维护三所隶属于北京市燃气集团第四分公 司, 共有员工59人。维护管理调压站68座, 调压箱 311台, 闸井490座, 中低压燃气管线共计约604km。

工作内容是通过对中低压管网和附属设施的运 行维护管理, 达到保证管网安全连续稳定向用户供气 的目的。

背景

2.1 影响燃气管网安全运行的原因

一般来讲只要是燃气供应企业,就存在发生突 发事件(事故)的可能性。我国历来重视燃气安全工 作,也出台了一些条例和管理办法,但是快速的城市 化进程和各地生产力水平、城市管理水平的参差不 齐,导致与燃气相关的事故不断发生。

北京市燃气集团公司在管网安全管理方面有过深 刻的教训, 也积累了丰富的经验。运用统计分析找出 突发事件(本文仅讨论管网事故)的发生规律。

表1 2007年至2009年管网事故情况)年管网事故情况	表1 2007年至2	表1
----------------------	----------	------------	----

年份	事故次数	自然腐蚀	外方施工	设施故障	地面下沉	人为误操作	建筑物重压或车辆碾压	水堵、冻堵、杂质堵塞	人为破坏
2007	122	19	50	34	4	1	7	6	1
2008	84	6	30	36	4	0	4	2	2
2009	91	22	41	20	4	1	1	1	1

结论

随着国家经济发展对能源、环境提出的新要求, 天然气产业的深入发展, 政府积极出台相关政策, 企业 改变经营观念,大力发展天然气分布式能源系统,对行 业发展、对企业发展,实现社会科学发展意义重大。

参考资料

- 1中国城市燃气发展现状战略动向(三)
- 2 中国能源网
- 3 中国政府网

这是北京燃气集团公司3年间管网事故的统计 表,从中可以看出外方施工、自然腐蚀等是影响管 网安全供气的主要原因,其中外方施工占比分别为 41%、35.7%("奥运"因素降低)、45.1%、旱小步 增加趋势。

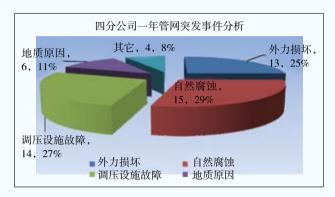


图1

综上(表1和图1中)所述,外力破坏和自然腐蚀 是影响管网安全的两个关键原因, 其中的外力破坏就 发生于第三方施工作业的实施过程。我们希望通过建 立一种机制,一方面降低第三方施工对燃气在役管网 和地下设施意外破坏的发生概率,另一方面通过善加 处置行为降低发生损害后的危害度;从而减少因管线 受损造成的燃气泄漏引起的空气污染和着火等各类次 牛灾害的发生。

在分析事件发生过程时,一般要解决三个问题 即:发生了什么?怎样发生的?为什么发生?根据集 团公司施工配合管理规定,涉及外方作业管网运行人 员配合要做到三步,一是及时发放《施工配合单》并 上报,二是建立施工与运行人员的相互联系,三是根 据工程提出保护要求并每日巡视和进行日志记录。这 些措施基本涵盖了配合作业中的通常方法, 那究竟是 什么原因造成施工配合突发事件的概率如此之高呢?

2.2 施工配合背景分析

(1) 定义

施工配合目前业内还没有一个明确定义,习惯说 法泛指一切与施工有关的工作;包括:前后工序搭接 的工程内部配合、两项相互影响同时进行的分项或分 部工程的配合、一项作业可能对其他在役设施正常使 用发生影响的配合等。工程实施可能涉及同一单位 的多部门间内部配合, 也会有涉及多家单位间的外部

配合。

(2) 第三方作业是影响燃气管网安全运行的重 要因素

管网运行管理的出发点和落脚点都是为了维护管 网的连续、安全、稳定供气。通过运行发现问题,通 过检测确定地点,通过快速修复保证客户用气。施工 配合管理是运行员工"发现问题"的重要环节工作。

借用一组国际燃气联盟配气委员会的燃气事故统 计信息(连续5年统计)(如表2),说明第三方作业 的固有属性。

表2 事故的原因

事故原因	易发事故%	偶发事故%
第三方作业	9	47
钢管的腐蚀	17	6
机械接口	18	3
灰铁管(断裂和青铅麻丝接口)	36	10*
螺纹接口	4	3
焊接接口	1	2
施工活动	1	18
地层移动	2	5
其他	12	6
总计	100	100

注:*主要原因为灰铁管的断裂

易发事故是指多种原因造成的管网轻微泄漏等 现象发生时,需要及时处理的事件。由于平时管网运 行中非常注意这类情况, 所以发生频次高但严重灾害 的可能性不大; 偶发事故就是监控不到的突发事件, 控制不好是容易造成人员和财产损失的事件。表2中 可得出突发事件的主要发生方向: 第三方作业、施工 活动等; 虽然易发到突发事件的转化概率只有千分之 一,但是其可能导致的危害是巨大的。譬如:2010年 7月19日国贸桥, 因为北信基础施工造成的燃气和自 来水管道断裂的事件,虽无人员伤亡,但据官方统计 数据直接损失24万元,间接损失超百万元,并且造成 了很大的社会影响。

综上看出因第三方施工造成的管网破坏, 是影响 各国燃气企业安全的主要原因之一。根据中国城市燃 气协会统计既往数据:国际外力破坏造成管网损坏为 0.01次/10⁶m~0.4次/10⁶m; 国内燃气供应企业平均 数据为4次/10⁶m~10次/10⁶m(四分公司管网损坏约 4次/10⁶m~5.5次/10⁶m); 是国外同比数据的25倍~400 倍。我国第三方作业处于高发频率, 是和我国处 于快速城市化进程,燃气化率低、国民对燃气的 安全意识较低等因素正相关。符合当一个国家的城市 燃气化水平处于10%~50%之间时,是燃气等各类市 政设施事故高发的行业规律。

为适应城市化进程,各类地下管网的里程不断增 长的要求, 第三方作业的现有施工配合管理机制需要 向先进国家和企业学习。通过吸收和消化,并按照中 国的国情和北京的特色进行完善和改进。如同日本的 《共同沟法》、美国的811呼通平台以及韩国EOCS系 统等第三方施工管理措施,都是伴随城市快速发展突 发事件激增的环境下产生的。

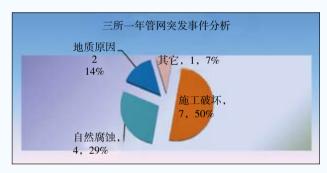
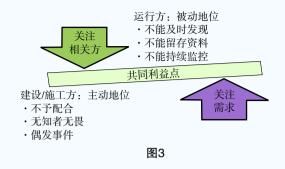


图2


图2是运维三所一年度管网突发事件统计。从中 看出如何处理好第三方作业与维护管网安全二者关系 是保障安全稳定连续供气的关键课题。

(3)施工配合工作特性

目前北京燃气的地下管网达到13 000km,城市 燃气化率虽高达90%,但仍然因第三方作业引起的突 发事件率较高是由北京城市建设自身特点决定的。其 一,改造工程多,配合必然多。北京的各类基础设施 建设并不是齐头并进的, 三环内老旧城区原有市政基 础不足或布局不合理,改造势在必行。其二,同一工 程多个子项相继进行施工,客观造成配合难度大。比 如: 道路改造中雨污水、电力等分别由不同的施工队 进行施工。其三,大型工程,工期跨度大,配合工作 难度大。如: 工期跨年度的地铁施工工序复杂, 涉及 多种管网的临时改移、保护。其四,施工队伍水平高 低不一、安全意识不强,现场人员综合素质堪忧,增 加配合工作难度。表现为一是从项目经理到现场带班 不重视配合工作,只要不出事,只求进度(尤其是微小 工程):二是施工多在夜间、机械施工等本身易发:三 是直接作业人员非专业、思想麻痹,不清楚燃气泄漏甚 至燃烧可能造成的危害。其五,施工过程中,随意更换 队伍和联系人导致配合困难,如:架空线入地工程,21 处35条线原有14个施工单位后增加3支队伍,更换了其 中3处8条线的施工队伍,后增施工队之间交接不明确 仅有1支队伍和运行工接洽,另两支队伍自行开工, 导致运行工多次现场看守并重新发放配合单; 这也是 增加配合难度的原因。其六,基础资料存在偏差,既 要查图纸初步确认,又要现场核查甚至挖"探坑"明 确,增加了配合环节。其七,施工配合工作相关方众 多,需要高效的沟通机制保障。一项施工可能涉及当 地政府、权属主管单位、施工单位等等多家部门,不 确定性增加了配合难度。因此现有的施工配合工作机 制导致参与者特别是一线人员处于监管困难的境地。 需要建立一线员工操作性强的新施工配合工作机制, 解决对于可能影响到在役地下燃气设施安全供应燃气 的各类施工工程,避免发生新设施与在役燃气管网出 现近线、占压等违章造成的安全隐患,避免或降低因 对地下管网的第三方破坏引发的泄漏、着火甚至爆炸 等的燃气管网突发(偶发)事件的发生。

(4)施工配合相关方利益点分析

2009年11月11日凌晨1:10分,北京市菜户营桥西 南角北京勘探设计研究院,进行地铁14号线前期地 勘,将丽泽花园DN200中压燃气管线钻漏。四分公司 运维三所等多个单位及相关抢修人员到达现场进行抢 险。经查明地勘人员没有进行现场交底(前期14号线 总配合会已召开,施工负责人自认为此处无管线)即 开始施工,造成突发事件,施工方承担全部责任。 为尽可能减少对居民生活的影响(该线供给4座调压 箱、两台3t供锅炉、1 284户其中826户有壁挂炉), 抢修分为两步:一是架设PE管临时线,二是更换损 坏钢管。共出动70余人,历史28个小时,善后处理直 至13日下午; 直接经济损失20余万, 间接损失近70余 万。通过对这件事的深入思考,针对施工和建设单位 的心理进行了分析,可以得出一些启示。如图3反映 施工方等和运行管理方的一个态势。

首先绝大多数施工方或建设方并没有故意不配 合的主观意识,主要是由于怕麻烦、不懂或忽视燃气 泄漏甚至爆炸等后果、急于抢工期等因素加之侥幸心 理, 盲目施工; 特别是一些2、3天就完工的小工程更会 如此。其次,作为运行员工在不预知施工时间,受限于 运行周期、个人能力等因素,做到及时配合比较困难。

在施工配合中既要关注施工方需求, 主动做好 宣传, 让施工企业理解安全的重要性, 又要善于借助 建设方、市政管理部门、城管等各方力量共同协调管 控。也就是说,北京市地下管网权属单位有十余家, 管线、管沟数万甚至更多公里,没有一个公共管理平 台(如共同沟法等)是很难保证不出现突发事件的, 这需要利益攸关各方共同努力才能做好这项工作。施 工配合管理出发点和落脚点就是力求"全过程、全方 位"实现对施工过程的监控。指导运行工不仅要关注 管线安全还要密切关注对方的利益需求, 寻找双方利 益共同点,进行较为充分的沟通,学会利用各种条件 做好工作。

内容和实施 3

施工配合工作仅凭工作热情不注重建立机制、选 择方法是不能较好完成的。落实 "统一管理 分级负 责 条块结合 属地为主 增强意识 预防为主"的施工配 合指导思想,通过强化施工配合的全过程、全方位的 持续管理,建设施工配合的全向管控机制,达到有效 降低因第三方施工不当行为造成对燃气管网的破坏风 险;并通过管理机制的实施尽最大可能减少因此可能 诱发的各方经济利益(甚至生命)损失。

3.1 五个角度

2010年3月6日21:05,中船宾馆院内铲车铲断管 线事件就是在我所运行人员发放了《施工配合单》,

并每日运行, 提醒施工方注意, 当日上午运行员工到 现场,施工单位负责人表明近期不进行靠近管线的作 业,到夜间就使用大型机械野蛮施工造成泄漏。不仅 影响了5 000户居民的用气6个h, 造成直接经济损失 达4万余元,间接损失达到19万元,而且事故发生在 "两会"保驾期间,西城区启动了政府应急机制,消 防、公安、安监局等多个部门到达现场,造成了较大的 社会影响。通过对具体事件的深入分析,我们认为做 好施工配合工作,应如图4中显示的几个角度进行。

施工配合五个角度:

图4

图中"人"就是双方的工作人员,作为运行方 员工事先发放了《施工配合单》填写了日志,设立了 标志,进行了督促和巡视,没有责任不到位的情况; 作为施工方由于时间段特殊,原计划推迟作业因甲方 因素匆忙施工,忽视了燃气管线再加上旁边监护不到 位造成了事故的发生。但是深入思考, 可以发现运行 员工在实际操作中,对施工方的宣传还有不到位的地 方,如:施工队现场负责人在发生事故后竟然忘记了 运行人员紧急联系电话,直接拨打119电话,致使事 态扩大。运行工没有关注施工方案中机械的使用,并 且提出的保护管线要求不细致, 凭经验直接告诉施工 方保护方案,由于施工队没有亲自做保护方案致使思 想上重视程度不足、应用生疏;同时运行工注意了预 留抢修空间使得抢修比较顺利等。

下面公式是施工配合管理展现的各方关系:

F(施工配合)=f(管理机制, 攸关方权益, 员工素质、意外因素)

可以看出,管理机制欠缺、攸关方权益、任一方员 工素质(如:安全意识缺乏等)、意外因素等,都在影响 配合工作。强调过程控制、全方位管理,兼顾攸关方权 益,建设全向的管控机制;才能既有效降低可能导致

经营与管理 Management and Administration

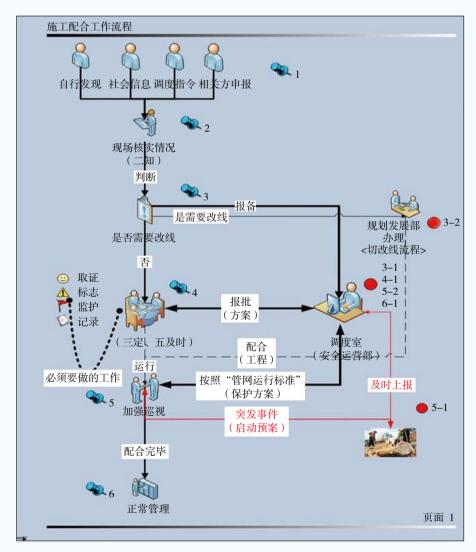
管网受损等诸多风险又确保施工方顺利完工。

3.2 施工配合全向管控机制内容

我们在总结了施工配合的5个关注角度的基础 上,经过梳理升华确定了"二知、三定、五及时" 的工作方法(图5)和实施细则,配套了图示化的工 作流程: 最终形成施工配合系统工作方法。

(1)施工配合工作方法

要求员工在实际作业中,前期"二知、三定", 一是要畅通沟通渠道; 二是通过确定施工时间、确定 燃气管线位置、确定保护要求, 达到利用有限员工实 施有效监管的目标;全过程实施"五及时"做法。


(2)工作流程

包含流程图、流程说明书以及制度索引和管控过 程中需要的表单、记录、资料等。具体指导一线员工

"五及时" "一知" 及时发现施工迹象并发《施工配合单》, 知工程概况, 及时填日志和留存影像资料, 知相关方联系方式。 及时沟通并上报, 及时做好现场标识, 及时做好突发预案。 前期交底 中期实施 后期管理 "三韋" "过程要点" 定实施时间, 忌:发单后不管, 忌:不及时报告、沟通, 定管线位置, 定管线保护要求。 忌:现场标识后不留影像资料, 忌:配合区域内抽水缸不查图拴点。

图5

施工配合的规范化处理程序, 使员工能够轻松理解并 能认真执行。(图6、表3)

表3 设施建设工程配合情况明细

项目名称			
配合道路启 -止点			
施工市政管线长度(沟米数)		(米	;)
涉及燃气线长度(米)		(米	;)
计划开工-完工时间	开工:	完工:	
施工负责人(签字)		电话:	
现场负责人(签字)		电话:	
涉及管线名称			
燃气管线管径(DN)			
施工闸井距燃气管线距离			
施工线距燃气闸井距离			
并行间距(米)			
交叉 (处)			
管片负责人		电话:	

(3)施工配合工作细则

根据施工配合工作特点, 使得员工知道如何取 得有利的现场图像资料证据、如何及时进行记录并上 报、如何与相关方沟通和处理拒签情况、如何发挥预 案的减灾作用等等。

(4)培训和激励

一项完善的管理过程实施,必然有对参与者的 培训和优秀者的激励。"施工配合的全向管控机制" 的实施采用岗前理论教育,在岗实践熟悉,有事反复 研讨的"三段式"培训思路,干中学、学中干。一线 员工实施按照手中的卡片内容,要点不离手落实是前 提。同时激励机制是管理措施得以积极落实的关键, 按照公司和所级《绩效考核实施细则》的规定,给予 表现突出的同志及时的物质和精神奖励,也是该管理 机制推进实施的助力。

3.3 施工配合的全向管控机制的实施

按照新"施工配合工作流程"我们尝试进行施工 配合16处,既有大型的地铁施工,也有一个晚上就完 成的歌华线路改造。通过对施工迹象的关注,及时了

解施工进度,加强相关方沟通,保证了管网安全稳定 运行。在试行中注意总结和完善施工配合工作流程。 如图6中"探坑"、"过程要点"等的表述,就是实际工 作过程中发现缺陷后,进行的补充和完善。比如: 2010年10月14日17:40西便门东里小区内道路改造, 运行员工按照"施工配合工作流程"进行配合,在确 认图纸上原经过废除的抽水缸位置不影响施工后,忽 视了实地的再度核查,结果施工单位作业时抽水缸碰 坏燃气泄漏;同时由于该员工按照流程作业,预留了 紧急电话、宣传到位告知了施工队紧急情况下的处置 方法, 因此燃气的实际泄漏损失很小, 没有影响用户 使用。这次教训总结出凡是施工配合必须进行沿线的 抽水缸拴点,并在必要时挖探坑作业……一次次的总 结,施工配合管理方法日臻完善,最终形成实际操作 强的"施工配合的全向管控机制"。

4 实施效果

我们实施施工配合的全向管控机制后,效果 是十分明显的,一些小型施工配合也能得到良好监 控,保障了燃气管网安全。图7是地铁施工配合的场 景照片。

图7

如:2010年5月运维三所运行人员在运行到玉泉 营西侧时,发现歌华有线正在进行施工,已施工区域



图8

图9

距离管线不足50cm, 了解实情后制止了施工单位的 行为,并告知改正,事后所里对员工进行了精神和物 质奖励。这是一起没有经过配合交底的微小工程施 工。施工人员说本来工程3天就可以完成,由于返工 工期延长到了5天。

如图9,2010年以来,虽然运维三所施工配合工 作量比2009年增长了4倍,但是发生第三方破坏的突 发事件大幅降低,自我发现率增长明显。

从2009年和2010年突发事件原因(图9)的比较 来看, 自从建设实施了施工配合的全向管控机制以 来, 因外力破坏造成的事件从7起降低到2起, 下降幅 度超过70%,效果明显。

综上所述,施工配合的全向管控机制是在实际工 作中总结出来的具有很强操作性的管理机制创新;是 实际工作经验的结晶。但是一个管理机制再完善,也 无法避免突发事件的发生, 因此每一起施工配合工作 的后面都有"突发事件预案"的支持。希望通过我们 的努力, 为首都燃气管网安全稳定连续的供应天然气 贡献自己的力量。

参考文献

- 1城市燃气管理条例
- 2 北京市燃气集团有限责任公司职业健康管理体系
- 3 李猷嘉.城市燃气发展中的安全问题
- 4 北京燃气安全工作及事故案例分析