换,导致误差增大,难以保证更高的测量精度。近 年来的技术进步, 使二次测量仪表在流量计算机系统 庞杂体系的基础上,实现了一体化和小型化。人们将 传感器、积算器、显示器、键盘、电源、通信接口等 部件集成在一起,摆脱了传统的由变送器加数据采集 器、流量积算显示仪<或计算机>的复杂模式,进一步 提高了标准孔板流量计的计量精度, 拓宽了量程比, 并再次扩大了标准孔板流量计在油气田和城市燃气领 域的使用范围。

3.3 与其他流量计相比,标准孔板流量计的独特优势

由于标准孔板流量计"无须实流校准,就可确 定流量计的测量值(差压)与流量的数理关系,其误 差也可按标准进行估算"、这样一个其他流量计无法 具备的特点,使得广大燃气单位的计量管理人员,无 须第三方的介入,对计量结果到底准不准,就能做到 心中有数(当然还应该依法对流量计周期检定,只不 过它的检定在计量现场就能完成)。当上游供气单位 使用的大流量计量仪表也是标准孔板流量计的时候 (川渝地区绝大多数是如此),如遇较大输差,那么 我们就有条件与供方讨论和查明形成输差的原因,然 后进一步降低输差。输差的大小,直接关系到广大 燃气单位的经济效益。所以,让自己的计量结果计 得准,说得清,是我们计量管理人员的主要任务。 而标准孔板流量计的优势之一就在于此。除此以外 的其他流量计, 当我们对计量结果感到质疑时, 你在 现场没有手段来确认流量计到底准不准。只有把它拆 下来,送到检定机构去校准后才能做到心里踏实。但 是, 检定的条件与使用现场所处的条件是否吻合? 假 如二者存在较大差异,这个差异对计量结果的影响又 是多大?这些问题怎样才说得清楚?如此等等,在有 计量纠纷时, 供需双方很难达成共识。但标准孔板流 量计却无须这么纠结。如果你对它的计量结果感到怀 疑,那么只需在现场的计量流程上,参照国标"GB/ T21446-2008",对它进行一次检查,如果一切合乎 标准规定, 计量结果就是值得信赖的。要是检查中发 现了问题,按照标准马上予以纠正就行了。在计量实 践中,常见的问题有:一是给流量计二次表输入的计 量参数有误。这个问题很容易解决,把输错的参数改 过来就行了。二是流量计二次表的计量准确度发生了 变化, 达不到规定精度了。这个问题也很好解决, 在 现场用标准器把它校正回来就行了。三是一次表的物 理形态在运行中偏离标准状态,如孔板因受到气流杂 质的磨损,其几何尺寸发生了变化,再也达不到标准 的要求了。这时候,更换一块符合标准要求的新孔板 就行了。以上问题的解决,均可以在不停气、也不影 响计量的状态下完成。而这也是标准孔板流量计另一 个优势。

结语

标准孔板流量计应用于燃气大流量计量中,在 适官的流量范围内所获得的计量结果基本上可以做到 "计得准"、"说得清",对供需双方来说是值得信 赖的流量计, 当然, 标准孔板流量计的使用需要严 格遵循相关技术标准和管理规范,对日常维护人员有 较高的专业技术要求, 比方说要定期清洗标准孔板 和导压管, 定期调校差压仪表的零点漂移, 定期采样 分析燃气组分并置入到流量计算机,这也是为了使计 量结果做到"计得准"、"说得清"所必须付出的工 作量。

另外,标准孔板流量计也有它自身的弱点,比如 它的一、二次表的构成仍显复杂,安装场地比其它的 流量计要大一些, 在燃气流量变化较大时, 需要通过 更换不同节流比的孔板才能满足要求,相对其他流量 计而言可用流量范围仍不够宽。

工程信息

中石油天然气管线 山东昌乐支线工程开建

2012年6月18日,中石油天然气管线山东昌 乐支线工程在宝通街北侧开工建设。工程总投 资1.1亿元,由山东鲁鸿天然气管网投资有限公 司投资建设,包括次高压管网16.2km、门站加 气站等。整个工程完工后将达到年供天然气能 力3.5亿m³的规模。

(本刊通讯员供稿)