doi:10.3969/j.issn.1671-5152.2013.05.005

燃气企业基层班组安全风险等级评价及控制方法

□ 秦皇岛市燃气总公司(066000)牛全忠

要: 本文介绍了基层单位、班组在开展安全评价时如何确定危险危害因素,对危险危害因素采用简 单易学的评价方法确定风险等级、对高风险因素的控制措施。

关键词:安全评价 危害识别 风险等级 风险控制

开展安全风险等级评价的意义

燃气作为一个高危行业,诱发安全事故的因素 很多。因而对各基层单位、班组在从事某项作业前进 行安全风险评价,确定风险等级,并相对应地采取有 针对性的防范措施,从而最大程度地避免、减少事故 就显得尤为重要。

安全风险等级评价的定义

安全评价是以实现工程、系统安全为目的, 应用 安全系统工程原理和方法,对工程、系统中存在的危 险、有害因素进行识别与分析,判断工程、系统发生 事故和急性职业危害的可能性及其严重程度,提出安 全对策建议,从而为工程、系统制定防范措施和管理 决策提供科学依据。

班组是企业中基本作业单位, 是企业内部最基层 的劳动和管理组织。基层班组"安全风险评价"就是 全面利用基层班组各种基础资料,包括静态的、动态 的各种参数进行处理、分析,找出在不同环境、不同 时期、不同状态下进行施工作业过程中的各种危险因 素,发现重点的危险性因素并确定安全风险等级,针 对找出的各种危险因素,采取工程的、技术的、管理 等方面的措施和手段, 达到对危险因素进行消除、改 善或控制的目的,最大程度地减少或避免生产事故的

发生,保证员工的人身和公共财产的安全。

3 开展安全风险等级评价的时机

当任何生产经营活动被鉴定为有安全事故危险 性时,那么从事该活动的单位或班组便应进行评价工 作。安全风险是随时间、作业地点、生产工艺、使用 设备的改变而变化的, 因而安全风险管理是一个动态 的管理过程,这就要求基层班组实施动态的风险评价 与风险控制,即基层班组在从事一项工程或较大的施 工作业时应进行风险评价。一般而言, 当出现以下情 况时, 应该重新进行风险评价:

- (1) 当班组工作任务发生改变时;
- (2) 当班组施工工艺发生改变、从事重点工程 (或从事危险高的作业)时;
 - (3) 当班组施工地点或现状发生改变时;
 - (4) 当班组组织结构发生重大改变时;

安全风险等级评价及控制的实施过程

安全风险评价主要由以下3个步骤所组成:评价 因素(危害的识别)的确定、评价危害的风险和控制 风险的措施及管理。

4.1 评价因素的确定

识别危害是安全风险评价的重要部分。若不能

安全生产 Safety in production

完全找出事故危害的所在,就没法对每个危害的风险 作出评价。评价因素的确定过程也就是危害因素的识 别过程。

对一个班组进行风险评价, 主要从两个方面进 行;一是班组过去一段时间内的生产现场安全管理指 标;二是班组各种软、硬条件两方面因素,具体指软 件即静态因素,不随班组生产场所的变化而变化;动 态因素,随班组生产场所的变化而变化。根据燃气生 产经营单位的实际生产现场情况确定危害因素有以下 几个方面:

4.1.1 安全管理指标

- (1) "三违" 发生情况;
- (2) 隐患、二次未整改隐患条数;
- (3)安全标准化得分;
- (4) 非人身事故起数;
- (5)人身事故起数。

4.1.2 静态因素

- (1) 班组组织构成:
- (2)班组员工素质构成
- (3)技术管理;
- (4)安全管理制度建设;
- (5) 现场施工组织管理。

4.1.3 动态因素

- (1) 危险工序识别;
- 1)燃气设施停气、降压、带压开孔、封堵及通 气作业:
 - 2) 动火作业;
 - 3) 进入受限空间作业;
 - 4)临时用电作业;
 - 5) 高处作业;
 - 6) 其它危险高的作业。
 - (2)工作场所环境安全隐患识别
 - 1)厂房布置情况(与周围安全间距);
 - 2) 异常气象条件(高温、低温、高湿);
- 3)噪声、振动(来自设备自身的撞击、转动、 摩擦:来自流体在管线、容器内的流动、撞击和压力 突变产生的噪声);
 - 4) 关键装置(重大危险源等);
 - 5)其它(环境污染等)。

在进行评价前,必须明确被评价对象及其影响范

围,选择恰当评价类型,明确评价内容,找出评价依 据,认真收集被评价对象的技术资料和队伍的管理状 况、人员素质等资料,确定安全评价标准。如果没有 危险性标准, 定性和定量将失去意义, 也将使评价者 无法判定评价对象的安全性是否符合要求以及改善到 什么程度才算合理。

危险因素是指可能造成人员伤害、疾病、财产损 失、作业环境破坏或其它损失的根源或状态。只要存 在危险源就有可能构成安全隐患、存在安全风险、导 致牛产安全事故,因而,查找危险源是搞好安全风险 评价工作的前提和基础。因此, 在评价过程中必须深 入现场实地勘察,不仅要从气象条件、生产条件以及 现有的技术、工艺、材料和设备的设计、安装、工作 状态等技术方面,还要从安全管理制度、作业规程措 施贯彻执行情况和工作人员的安全知识、操作技能、 安全意识、风险辨识能力等方面对存在的可能导致燃 气生产安全事故的危险危害因素进行全面辨识, 力求 辨识全面无溃漏。并根据辨识结果编制成评价表,根 据各种因素在生产过程中的出现频率、危害程度进行 定量化,最后根据得出的部分确定出不同的级别。

4.2 风险评价方法

为便于基层员工通过简单的培训就能够掌握具体 的评价方法,现介绍2种在实际工作中经常用到的工 作危害分析法(JHA)和安全检查表法(SCL)及风 险等级判定的依据。

4.2.1 工作危害分析(JHA)

从作业活动清单中选定一项作业活动,将作业 活动分解为若干个相连的工作步骤,识别每个工作步 骤的潜在危害因素,然后通过风险评价,制定风险等 级,制定控制措施。

第一步:分解工作步骤,把日常的工作分解为几 个主要步骤, 即先做什么, 其次做什么等等。

第二步: 识别每一个步骤的主要危害和后果。识 别思路: 谁会受到伤害(人、财产、环境)? 伤害的 后果是什么?找出造成伤害的原因。

第三步: 识别现有安全控制措施。如果这些控制 措施不足以控制此项风险, 应提出建议的控制措施。

4.2.2 安全检查表分析(SCL)

安全检查表分析方法是一种经验的分析方法,是 分析人员针对拟分析的对象列出一些项目,识别与一

般工艺设备和操作有关的已知类型的危害,设计缺陷 以及事故隐患, 查出各层次的不安全因素, 然后确定 检查项目, 再以提问的方式把检查项目按系统的组成 顺序编制成表,以便进行检查或评审。

安全检查表的编制程序: (1)确定人员,建立 一个编制小组,其成员包括熟悉系统的各方面人员; (2)熟悉系统,包括系统的结构功能、工艺流程、 操作条件、布置和已有的安全卫生设施; (3) 收集 资料, 收集有关安全法律、法规、规程、标准、制度

及本系统过去发生的事故资料,作为编制安全检查表 的依据; (4)判别危险源,按功能或结构将系统划 分为子系统或单元,逐个分析潜在的危险因素;(5)列 入安全检查表,针对危险因素和有关规章制度,以往的 事故教训以及本单位的经验,确定安全检查表的要点 和内容, 然后按照一定的要求列出表格。检查项目和 检查标准列出之后,还应列出现有控制措施。

4.2.3 工作危害分析法 (JHA) 和安全检查表法 (SCL) 风险等级判定(见表1、表2、表3)

表1 事件发生的可能性(L)判定准则

L值	标准
5	现场没有采取防范、监测、保护、控制措施,危险源事件的发生不能被发现(没有监测系统),或在正常情况下经常发生此 类事故或事件
4	危险源事件的发生不容易被发现,现场没有检测系统,也未作过任何监测,或在现场有控制措施,但未有效执行或控制措施 不当;危险源事件常发生或在预期情况下发生
3	没有保护防装置、没有个人防护用品等),或未严格按操作程序执行,或危险源事件的发生容易被发现(现场有监测系统),或曾经作过监测,或过去曾经发生,或在异常情况下发生类似事故或事件
2	危险源事件—旦发生较能及时发现,并定期进行监测,或现场有防范控制措施,并能比较有效地执行,或过去偶尔发生危险 事故或事件
1	有充分、有效的防范、控制、监测、保护措施,或员工安全卫生意识相当高,严格执行操作规程。极不可能发生事故或事件

表2 事件后果的严重性(S)

S值		分类				
	严重程度	人员	财产损失 /万元	停工范围	环境	声誉
5	很高后果	3人以上死亡; 10人 以下重伤	> 50	分公司停工;或造成1万户以上,3万户以下居民连续停止供气24h以上;高等院校的公共食堂连续停气24h以上。	重大泄漏,给工作 场所外带来严重的 环境影响,且会导 致直接或潜在的健 康危害	国际影响
4	高后果	1-2人死亡或丧失劳 动能力;3-9人重伤	> 25	部分关键装置停车;造成停气影响的居民用户数量在1000以上10000户以下,且时间在24h以上。	重大泄漏,给上作	国内影响;政府管制,媒体和公众关注 负面后果
3	中后果	严重伤害; 职业相关疾病	> 10	降低生产负荷; 导致本市一定 区域内燃气设施低压运行,但 未影响用户安全用气的;停气 影响1 000户以下居民,且24h内 无法恢复,或影响1 000户以下 居民采暖2h以上。		本地区内影响;政府管制,公众关注负面 后果
2	较低后果	工作受限;轻伤	< 10	影响不大	事件不会受到管理 部门的通报或违反 允许条件	社区、邻居、合作伙 伴影响
1	低后果	医疗处理,不需住院;短时间身体不适	无损失	无停工	时间影响未超过界区	企业内部关注;形象 没有受损

风险度	等级	应采取的行动/控制措施	实施期限
20~25	巨大风险	在采取措施降低危害前,不能继续作业,对改进措施进行评估。	立即
15~16	重大风险	采取紧急措施降低风险,建立运行控制程序,定期检查、测量及评估。	立即或近期整改
9~12	中等风险	可考虑建立目标、建立操作规程,加强培训及沟通。	一定期限内整改
4~8	可接受	可考虑建立操作规程、作业指导书,但需要定期检查。	有条件、有经费时治理
小于4	轻微或可忽略的风险	无需采取措施,但需要保存记录。	

表3 风险等级R判定准则及控制措施

风险等级R=事件发生的可能性(L)×事件后果 的严重性(S)

风险共分5个级别:巨大风险、重大风险、中等 风险、可接受风险、轻微或可忽略的风险。R分值越 高,安全风险越大,分值越低,安全风险越小;

4.3 控制风险的措施

根据评价表中安全风险性高的因素(大于等于12 分),即发生频率大、涉及的作业人员多、造成人员伤 亡的机会大的因素单列出来,根据实际情况制定相对 应的改进措施,力争达到消除、改善或控制的目的。 消除、改善或控制措施的费用应当与风险相平衡的原 则,应该对所选择的安全控制措施严格实施以及应 用。达到降低风险的途径有很多种,下面是常用的几

种手段:

- (1)消除风险:改变作业工艺、改善施工程序 及工作环境等; (运输道路不平,可进行硬化; 燃气 泄漏条件下,采用防爆风机吹散等)。
 - (2)转移风险,进行投保等;
- (3)减少薄弱点,对员工进行安全教育,提高 员工的安全意识。
- (4) 进行安全监控:及时对发现的可能存在的 安全隐患进行整改,及时做出响应(加强现场安检人 员配备等)。

通过对各种安全风险性高的因素针对性采取各种 措施后,将采取的措施再进行评价,直到评价中等风 险以下方可组织施工作业。

工程信息

山东威海LNG应急气源储备站及加气站开建

2013年4月25日, 2013年山东威海市级重点 工程——液化天然气(LNG)应急气源储备站及 加气站在环翠区张村镇开工建设。工程全部建成 后,总储气能力将达到108万m3,可有效缓解制约 威海市气源供应的瓶颈问题。

该工程由威海港华燃气有限公司投建,集液化 天然气(LNG)储备、压缩天然气(CNG)加气于一 体,分二期建成,一期工程将兴建6个150m3的储 罐,储气能力达到54万m3,二期工程也将建成同 等规模,总储气能力将达到108万m3,可有效保 障威海市市民用户在气源供应紧张时约30天的用 气需求。截至目前, 威海市拥有各类燃气管线1 400

余km, 民用户17万余户, 工商用户800余家, 年供 气能力达到7000余万m3。

(本刊通讯员供稿)