doi:10.3969/j.issn.1671-5152.2024.11.012

日本燃气行业概况和燃气技术发展方向探讨

吕指臣

国家发展和改革委员会价格成本和认证中心

摘 要:日本作为亚洲综合实力较强的发达国家,探讨其燃气行业的发展状况和燃气技术应用情 况,有益于为我国燃气行业的发展提供基础参考。本文通过研究发现,日本天然气消费是 高度依赖进口的,且城市燃气管道非常匮乏,但是燃气技术定位比较明确。日本的经济产 业省已把绿色甲烷化作为一个低碳的重要战略,同时给予相关企业较大支持,以实现从当 前的天然气利用转化为绿色甲烷或氢能利用的高效衔接。进一步分析可知,由于日本燃气 发展前端的相关技术装备规模和国土面积的限制,制约了绿色甲烷化规模,日本燃气企业 可能会在海外寻找燃气技术的实现路径。

关键词:日本燃气行业;城市燃气管道;绿色甲烷化

日本燃气行业发展概况

1.1 发展现状

2022年日本的天然气消费量为1 005.0亿m3, 通 过LNG进口量982.6亿m3。每年的天然气消费量与进 口量相当,近年来,进口量占消费量的比例保持在 97%~98%之间。在天然气来源上、澳大利亚、马来 西亚、俄罗斯是前三大进口来源国,2022年的占比分 别为42.6%、16.6%、9.4%。自1970年开始,日本将 一次能源大部分改为高热值的天然气,应用领域包括 用热设备、空调、天然气汽车、天然气发电。2010年 以后,几乎所有的工业领域均被天然气应用覆盖。 城市燃气领域, 天然气约占一次能源比例的97.1%, LPG约占2.9%。从天然气销售结构来看,居民用气占 25.4%、商业用气占17%、工业用气占57.6%。

日本城市燃气管道非常匮乏,主要分布在城市地 区,管道覆盖面积仅占全国土地面积的6%。各类燃 气管网仅有26.76万km。日本燃气企业由燃气零售企

业、一般燃气管道企业和燃气制造企业三类构成,其 中燃气零售企业1346家,一般燃气管道企业193家, 燃气制造企业27家。从终端用户使用的能源来看,利 用193家一般燃气管道企业的燃气管道使用天然气的 各类民工商用户2 652万户; LPG销售企业16 825家, 约2 218万各类用户;约10家电力销售公司,约4 700万 各类用户。从城燃企业的分类来看,投资建设LNG码 头、拥有大规模城燃管网的企业数量占比1.6%,主要 为东京燃气、大阪燃气、东邦燃气; 拥有少数LNG接 收站和少部分天然气管网的燃气公司数量约占3.2%, 主要为北海道燃气、仙台燃气、广岛燃气等;没有管 网单一做终端销售的燃气企业数量约占55.8%; 开展 点供的燃气企业约占39.4%。

1.2 改革历程

受资源条件限制,日本天然气严重依赖海外进 口; 受地理条件限制, 日本本土山丘多、地震频发, 日本国内跨区域长输管道较少。日本天然气消费市场 以发电和工业用气为主,消费主体主要集中在城市。

鉴于上述特征, 日本政府不得不放松市场准入管制, 鼓励和支持更多企业参与到海外寻找气源、建设LNG 接收站和配气管网以及提供分销零售服务。同时逐步 推动天然气管道对第三方开放自由化。

为配合终端用户自由选择供应商的改革措施, 1995年修订的《天然气公用事业法》提出,当时在 日本国内市场份额占比较大的3家大型燃气公司(东京 瓦斯、大阪瓦斯、东邦瓦斯)的天然气管道,可以通过 自由协商的方式对第三方开放,年用气量200万m3以 上的用户可自由选择天然气供应商。但由于缺乏标 准统一的第三方开放规则和公开透明的管道利用信 息,市场主体在管道实际利用过程中遇到了较大障 碍。1999年《天然气公用事业法》进一步修改、将管 道对第三方开放制度化,并将西部燃气纳入管道对第 三方开放的范围,至此日本国内市场份额最大的4家 燃气公司的天然气管道全部纳入开放范围。2004年修 订的《天然气公用事业法》提出了更加规范的第三方 开放要求,即燃气公司需要公开其管道利用的规则和 条件,并提出对第三方开放的标准化合同模板,管道 运输业务也被要求从管理和财务上与天然气销售业务 分离。2015年修订的《天然气公用事业法》进一步要 求东京燃气、大阪燃气、东邦燃气在2022年前实现管 道运输业务在法律上的拆分。到2017年开始完全实现 自由化,即:城燃企业改为配气+售气,配气为管输 公司, 售气有几家公司迅速扩充到193家公司, 为轻 资产模式运营,燃气销售量也大幅增加促进了市场发 展。此外,即使原有的大型城燃企业,也被政府强制 分割为上游公司、管输公司、下游销售公司(售气公 司)三个不同法人主体。按照法律规定,东京燃气、 大阪燃气、东邦燃气三家公司需将上游、管输、零售 拆分成为独立法人公司,其他公司不受限制。

日本燃气市场完全自由化后,上游生产企业负责 从海外采购LNG并销售给城燃零售企业,管道公司负 责高中低压燃气管道建设及运营,零售企业由终端用 户自主选择并保障供应。燃气设施中,以东京燃气为 例,除了燃气表(燃气表是东京燃气Network公司的 资产)以外,用户红线内(集团住宅时,分界线为道 路侧)的燃气管道、建筑物中的配管均是用户所有 物。用户红线内的修理、更换燃气管是有偿服务(红 线外燃气管是东京燃气Network公司资产)。

1.3 主要燃气企业情况

日本城燃行业主要有4大城市燃气公司,包括东 京燃气、大阪燃气、东邦燃气、西部燃气,具体业务 占比如图1。

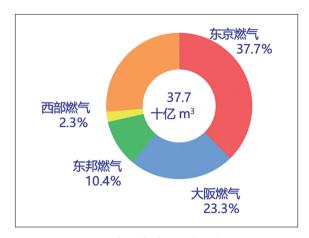


图1 日本四大城燃业务比例图

1.3.1 东邦燃气

日本东邦燃气株式会社总部位于爱知县名古屋市 热田区樱田町, 是日本第三大燃气公司。管网子公司 名为东邦燃气Network公司。是名古屋经济界的实力 企业"五朵金花"之一。另外四家分别是东海银行、松 坂屋、名古屋铁道(名铁)、中部电力(中电))。

东邦燃气于1922年6月成立后开始燃气销售业 务,零售地区为爱知县、岐阜县、三重县3个县,涉 及50市25町1村。自2022年4月起,东邦燃气实现了法 人分离,燃气制造、燃气销售、燃气输送不再为一 体,将管网业务从现有体制中剥离。截止目前,注册 资本金330亿7 200万日元,总资产达到6 935亿日元。 2022年以来,城市燃气、LPG、电力的用户数量稳 步增加,天然气销售量为35.5亿m3。在"尽可能实现 300万件用户"的目标中,2022年度末达到了292万件 的实绩,公司主力事业的城市燃气销售量,由于气温 全年上升, 工业领域的零件供给不足导致生产减少等, 业绩低于上年度。2023年LNG采购量266万t, LPG采购 量63万t,投资建设日本国内4个LNG接收站,管道长 度达3万km,拥有2个电厂,员工数6080人。

1.3.2 大阪燃气

大阪燃气公司成立于1897年,1905年开始运营, 主要涉及国内能源(燃气、电力)业务、国际能源业 务和生活与商业解决方案业务。国内能源业务包括了 城市燃气的生产、供应和销售、燃气器具销售、燃气 管道安装、液化天然气运输与销售、液化石油气销售 以及发电与售电业务。天然气业务主要从海外开采购 买天然气并以LNG形式运送到日本国内, 在日本国内 接收终端再气化后通过管道输送至城市,并销售给终 端工业、商业及家庭用户, 主要是在日本关西地区开 展业务。2022年起,大阪燃气原管道网络公司依法分 离,成立独立的大阪燃气网络株式会社,拥有燃气管 网6.31万km。2023年3季度,大阪燃气用户数为759万, 电力用户数为170万, 天然气销售气量68.45亿m3, 其中 家庭用户使用16.97亿m3,工商业使用51.48亿m3。

日本燃气技术发展方向

为了实现日本2050年碳中和的发展目标,各大燃 气公司也纷纷开展相关燃气技术研发应用,大阪燃气 作为日本主要燃气公司,致力于能源技术研发,重点 开展绿色甲烷化 (e-methane) 技术研发。

2.1 大阪燃气研发中心概况

大阪燃气研发中心主要是能源技术研发的场所, 其最开始的宗旨是作为燃气技术研发应用, 但随着碳 中和目标提出,常规燃气技术已无法对实现零碳、低 碳的需求, 因此, 目前研发中心以碳减排、碳中和为 主要课题研究来进行新技术的研发。

甲烷化是指由氢燃料和二氧化碳结合,通过一个 甲烷化设备来生成甲烷(天然气的主要成分)的过 程。该项技术研究的是如何有效利用从大气中吸收过 来的二氧化碳的一个技术。此处用的氡是绿氡(即: 可再生能源电解水生成的氢),通过该甲烷化技术生 成的甲烷叫做e甲烷(绿色甲烷化)。

大阪燃气的绿色甲烷化革新技术目标转换率是达 到85%~90%。预计2030年之前,革新技术仍处于实 验室研发阶段;到2040年,革新技术将实现商业化并 真正地推向市场。此外,大阪燃气生物质甲烷化再革 新技术也预计在2030年完成实验证明。

2.2 甲烷化技术的发展阶段

2.2.1 第一阶段(现阶段)

现阶段的技术是利用绿氢和二氧化碳,通过含有 触媒(即:催化剂)的甲烷化设备来生成绿色甲烷。

此阶段的技术研发主要由INPEX(日本帝国石油)和 大阪燃气共同推进。项目回收了INPEX长冈气田的二 氧化碳,将其与绿氢结合从而生成绿色甲烷。规模大约 一小时生产400m3甲烷,相当于1万户家庭的使用量。 2.2.2 第二阶段(革新技术阶段)

革新技术是通过高温电解的方式提高转化效率, 使甲烷化的单位成本降低。该阶段的技术也叫做 SOEC技术(固体氧化物电解槽技术),设备需要一 个SOEC板。革新技术分为3个阶段:第一阶段产量极 小, 大约一个小时仅生产0.1m3, 相当于两户家庭的量: 第二阶段提高产量至100m3/h; 第三阶段进一步提升 产量至400m³/h。

在此阶段,大阪燃气的关键核心技术是做甲烷化 电解时的金属板设备。值卡按电解槽使用陶瓷材质, 现在升级为金属材质,通过金属板把水和二氧化碳通 过电解生成氢气和一氧化碳, 再由生产出的氢气和一 氧化碳通过催化反应生成甲烷。现阶段大多数企业用 的是陶瓷板,但陶瓷板在电解时容易断裂,只能小型 化使用不能大型化使用。SOEC金属板本身的基础材 料是金属,但表面材料用的还是陶瓷。SOEC金属板 强度强、易焊接,可使整体投资成本降低。目前, 大阪燃气的SOEC金属板可多层插入电解槽来进行电 解。以前单层金属板的电解量相对较少,现在的技术 可以通过复数层的金属板提升电解量,提升规模,公 司的目标是1万方/小时的生产规模。整体而言,预计 到2030年, 革新技术可完成研发验证。

2.2.3 第三阶段(再革新阶段)

此阶段的技术是指从排水的污泥废弃物或其他生 物质垃圾中提取出来的生物质二氧化碳和可再生能源 制得的氢气结合生成甲烷的技术。由于本身在处理废 弃物时,就需要发酵槽等设备,因此,不需要再投资 新的设备,初期投资成本得到降低。再革新技术依然是 基于经济性来研发的,预计在2030年完成实验阶段。

2.3 甲烷化的技术比对及经济性

现阶段的甲烷化技术已经成熟,且全世界的燃气 公司都在使用的该项技术(用氢和二氧化碳结合生成 甲烷),但此技术目前并不具备经济性,价格比天然 气贵的较多。革新技术是大阪燃气特有的技术(用氢 和一氧化碳结合生成甲烷)。现阶段的技术需要4个 氢原子生成1m3甲烷,而革新技术只需3个氢原子,需

电解的氢少了, 电费也相应地减少, 成本降低下来。 此外,用革新技术生成甲烷的过程会有余热的排放, 可把余热再次利用起来,使燃烧反应的效率提高。革 新技术可使反应效率提高,单价降低,可达到约30% 的成本提升。

目前来讲, 甲烷化的价格非常高, 因为现在还处 于技术研发过程中且前期设备投资很多,折算后, 1m³气比常规天然气贵3倍~4倍。因此,在2030年前的 目标大约是掺混1%左右的e甲烷,约占大阪燃气整体 的1%左右。尽管日本燃气协会面临着2050年掺e甲烷 占比达到90%的目标挑战,但大阪燃气认为这个目标 是非常高的,需要相当好的技术和相当便宜的电价。 此外,90%还只是现阶段的一个目标,具体能否实 现,还需通过一直到2030年的整个实践过程来看价格 降低的大概水准,再进行延伸。其实,掺e甲烷更多 的是为了低碳、零碳以及实行碳中和,并不是为了低 价格。此外,燃气公司可直接利用现有燃气的基础设 施,不需再投资。

在产能方面,前端是以光电、风电的方式制得绿 电,再由绿电去电解水制得绿氢,因此需配套大量的

发电装机规模, 若无相应的规模, 可能会制约后端的 绿色甲烷化规模。受国土面积限制,大阪燃气可能会采 取以下两种方案:一是在海外投建绿电工厂,在当地电 解水制氢, 再通过现有的液氢运输把氢搬运回日本: 二是直接在海外投建生产e甲烷的工厂,利用现有的 LNG船、LNG接收站通过船运的方式进口到日本。

结论

本文通过梳理日本燃气行业发展现状, 总结其发 展改革的历程,结合日本相关燃气企业的实际经营情 况,探讨了日本燃气行业未来可能实现的技术发展方 向和实现路径。

总的来看,日本作为天然气高度依赖进口的国 家,其城市燃气管道匮乏,但目前对绿色甲烷化的燃 气技术定位明确, 且把绿色甲烷化作为极为重要的发 展战略作为一个低碳的重要战略。但是鉴于日本实际 国情,为从当前的天然气利用转化为绿色甲烷或氢能 利用, 日本燃气企业可能会在海外寻找非常规燃气技 术的实现路径。

其它消息

建国以来最强秋台风侵袭. 海南民生燃气全力以赴保障供气

2024年9月6日,海南省遭受新中国成立以来登 陆我国风力最强台风袭击, 登陆时中心附近最大风 力17级以上,是海口建市以来遭受的风力最强、12级 风圈持续时间最长、瞬时降雨量最大的台风,给海 口市造成了巨大损失,据不完全统计,全市倒塌和 损坏房屋3万多间,树木倒伏16万多株,农作物受 灾面积接近6万公顷,水、电、路等重要基础设施 遭受了严重破坏。

海口市受台风影响停气的小区有18个(占2 494个 使用管道燃气小区的0.7%),直接间接受影响的用 户5 622户(占65万燃气用户的0.86%),经全力抢 修,9月9日下午16时全部恢复通气。在受到超17级

台风正面侵袭的情况下,海南民生燃气共出险抢 修215次,做到燃气场站和燃气管网正常运行,小 区没有大面积停气,且在台风过境3日内全部恢复 正常供气。

海南民生燃气充分利用台风来临前的2天时间 完成防汛防风工作:对调压箱、立管、燃气场站等 进行排查及加固,对CNG槽车、钢瓶等可移动式供气 设备及其附件进行固定防止滑动;巡查全市范围施 工工地,并建立隐患监控台账清单;增设1倍的抢 险值班点并派干部靠前指挥, 联动上游部署气源保 供措施: 提前安排好话务人员及抢险抢修班组人员 食宿等后勤保障。有力保障了台风期间燃气安全。