doi:10.3969/j.issn.1671-5152.2025.08.007

户内燃气安全智能监测技术应用与分析

孟向阳,房冬冬,邢爱虎,孟 飞 郑州华润燃气股份有限公司

摘 要:城镇燃气历经多年运行发展,其安全运行直接关乎民生福祉,居民户内燃气安全逐渐成为 社会关注的重点领域。本文通过分析现有户内燃气设施的缺点,构建了一套户内燃气安全 智能监测预警系统、该系统通过部署高精度传感装置与物联网控制终端、实现了涵盖燃气 立管在内的户内燃气管道实时监测与智能预警,解决了传统人工入户安检模式存在的检测 盲区、空置户检查困难等痛点,为户内燃气安全智能化管理与应用提供参考。

关键词:户内燃气:智能监测:预警分析

概述

近年来,随着市场经济的快速发展,燃气用户数 量持续攀升, 在户内燃气管道长时间运行下, 管道老 化引发的泄漏风险显性化,户内燃气安全事故呈现多 发态势,户内燃气安全形势日益严峻。

为增强城镇燃气安全运营效能,2023年8月,国 务院安全生产委员会及住房和城乡建设部先后印发了 《全国城镇燃气安全专项整治工作方案》与《全国城 镇燃气安全专项整治燃气管理部门专项方案》,文件 中强调了提升信息化建设的重要性,并倡导在燃气管 理领域深入应用物联网、人工智能等前沿信息技术, 以科技手段促进燃气安全的本质性提升。

当前,国内学者已对户内燃气安全的智能管理展 开相关探讨,许多学者提出的户内燃气安全管理技术, 虽通过安装智能燃气表、燃气报警器、电磁切断阀等燃 气设施实现监测, 但多数方案仅能实现燃气表后管道运 行状态监测,对表前立管等重要节点的动态参数缺乏有 效感知手段。本文构建的户内燃气安全智能监测预警 系统,有效解决了燃气立管运行状态实时监测难题, 为户内燃气安全智能监测预警提供了有效解决方案。

2 户内燃气设施

2.1 居民燃气表

当前居民燃气表主要涵盖4大技术类型: 机械传 动式基表、IC卡预付费表、LoRa扩频通信表及NB-IoT 物联网智能表,具备远程通信能力的只有LoRa扩频通 信表与NB-IoT智能表。从数据传输分析,两款燃气表 虽采用了能耗优化策略,通过数据包组帧压缩技术将 计量数据集约化处理,实现每日单次错峰上传,但这 种周期性休眠—唤醒的通信架构存在显著技术局限: 首先,数据交互窗口期被严格限定在每日的固定时 段,导致实时监测存在数据盲区;其次,表端仅在上 传周期内开放下行指令通道, 使得紧急关阀、参数重 置等关键操作存在执行延迟。这种基于能耗约束的通

[第一作者简介] 孟向阳,安全技术管理员,中级工程师,从事燃气安全、技术管理工作。

信协议设计,导致现有居民燃气表难以满足燃气安全 监测对实时数据流和即时双向交互的核心需求。

2.2 燃气报警器和电磁切断阀

燃气报警器作为户内燃气安全的核心监测装置, 在欧美发达国家,该设备已基本实现居民家庭的全面 覆盖,成为建筑安全标准的重要组成部分。中国市场 虽起步较晚,但近年来在政策推动下普及率持续提 升,部分省市通过财政补贴等方式鼓励用户安装。但 是,与燃气报警器配套使用的电磁切断阀存在功能局 限性, 该装置仅能对切断阀下游的燃气管道实施紧急 切断, 而对于燃气立管等切断阀上游的户内燃气管道 泄漏,现有技术方案尚无法实现快速响应与供气切 断。这一技术瓶颈客观上形成了户内燃气安全防护的 系统性盲区。

构建户内燃气安全智能监测预警系统

为了解决户内燃气立管安全监测盲区与空置户燃 气泄漏检测困难等行业痛点,实现对涵盖立管在内户 内燃气管道实时监测与智能预警,构建一套基于4G 物联网通信技术的户内燃气安全智能监测预警系统。

户内燃气安全智能监测预警系统通过部署智能安 全阀(集成高精度传感装置与物联网控制终端)作为 感知监测元件,安装于户外引入管位置,并依托4G 物联网通信技术,将智能安全阀监测的燃气立管的运 行参数实时传输至云端监测预警系统平台,该系统平 台通过数据建模完成数据分析与异常诊断, 异常情况 下触发预警机制。燃气运维人员可通过WEB端系统 平台及移动终端应用(APP/小程序)实时接收预警信 息,并启动应急处置流程。

3.1 系统架构设计

系统架构遵循模块化分层设计原则, 由感知层 (数据采集单元)、网络层(数据传输通道)、平台 层(智能分析中枢)和应用层(多端交互接口)四 大功能层级构成(详见图1),形成"监测-传输-决 策-执行"的全链路闭环管理。

3.2 系统功能

3.2.1 实时监测与预警

本系统通过部署户外燃气引入管位置的智能安全 阀,实现户内燃气管道运行状态实时感知,智能安全 阀集成压力与温度双传感模块,可对管道压力、温度 等核心参数实时监测,通过4G物联网建立与云端系统 平台的通信链路,实现监测数据实时回传及异常工况 预警提示。系统支持远程配置智能安全阀联锁策略,可 根据安全管理需求设定压力/温度阈值, 触发本地阀门 自动关闭,实现"监测-预警-处置"的闭环管理。

3.2.2 自主完成管道严密性试验

本系统具备远程预约智能安全阀自动执行户内燃 气管道严密性试验功能。用户可自定义配置检测周 期, 当智能安全阀执行关阀操作后, 检测周期内系统

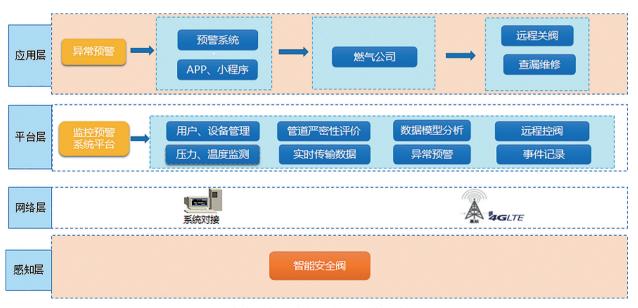


图1 户内燃气安全智能监测预警系统架构

按预设采样频率采集60组压力时序数据,并运用压力 衰减分析法对管道密封状态进行自动化诊断, 最终依 据评估结果智能安全阀自动执行本地闭锁策略以及异 常预警,实现"检测-分析-控制"的闭环管理。

3.2.3 实时远程控阀

本系统配备智能安全阀内置阀门状态可视化监控 界面,实时反馈智能安全阀位态参数。当遇到火灾等 突发灾害事件时,系统向智能安全阀实时发送应急关 阀指令,实现远程紧急关闭响应。智能安全阀集成多 模态人机交互功能,同时支持通过移动端控制程序实 施阀门状态远程操控。

3.3 参数调整

本系统配置多维参数动态管理接口,支持压力/ 温度监测阈值、严密性试验时间以及合格阈值、监测 数据回传频率等核心参数的后台调整。燃气运维人员 可通过预警系统平台实施不同场景化参数管理设置, 当安全管理需求或运行环境变更时, 依托双向通信协 议将配置参数实时下发给部署终端,实现智能安全阀 设备参数本地与云端同步更新。

管道严密性试验测试

选定某型智能安全阀(内置电子压力传感器最小 压力变化量10Pa)安装于某燃气实训基地供气系统户 外引入管位置, 进行管道严密性试验测试, 其中该实 训基地供气系统涵盖6组居民用户厨房单元,结构如 图2所示。

图2 某实训基地居民厨房结构

4.1 管道严密性试验合格阈值设定

依据CJJ 94-2009《城镇燃气室内工程施工与质

量验收规范》技术条款,低压管道系统严密性试验要 求居民用户稳压时间不少于15min,且压力计无压降 为合格。鉴于智能安全阀内置电子式压力传感器的精 度等级差异特性,压力示值存在一定偏差特征。为确 定智能安全阀进行管道严密性试验合格阈值,在确认 燃气实训基地整体供气系统严密性检测合格的基础 上,通过系统平台向智能安全阀下达指令,进行管道 严密性试验,结束后观察压力和温度变化。

结合居民用户用气习惯,选定用户日用气低峰 时段作为测试窗口,将测试周期划分为4个时间区 段,每个区段内按照每天执行1次严密性试验,每次 15min,每个区段共执行10次严密性试验,并通过系 统平台记录相关测试数据统计,详见表1。

表1 测试数据统计

序号	时间区段	严密性 试验次数	温度上升值 (℃)	压降值 (Pa)
1	2:00-4:00	10	-0.5 ~ 0	0 ~ 30
2	9: 00—11: 00	10	0.5 ~ 3.0	-300 ~ -20
3	15: 00—17: 00	10	-1.5 ~ -0.5	40 ~ 100
4	21: 00—24: 00	10	-0.8 ~ -0.4	40 ~ 80

根据测试数据分析,在确认供气系统严密性检测 合格的基础上,通过智能安全阀进行管道严密性试 验, 压降变化受装置内置电子压力传感器精度以及环 境温度波动共同的影响,导致不同日用气低峰时段的 严密性试验呈现差异性压降特征。通过数据可知, 在每日2:00-4:00时段,环境温度趋于相对稳定状 态,此时段管道严密性试验压力降幅波动较为平缓, 且基本上能完全避开用户用气影响。综合考虑,对 于智能安全阀,可设定管道严密性试验合格阈值为 30Pa, 检测时段设置在2:00—4:00时段。

4.2 燃气微小泄漏测试

为了测试在燃气管道发生燃气微小泄漏时,智能 安全阀进行管道严密性试验压降变化,通过上述某燃 气实训基地供气系统分别定性和定量模拟燃气微小泄 漏,并通过系统平台对智能安全阀下达指令,设定在 02:00-04:00时段, 进行管道严密性试验, 合格阈 值为30Pa,测试时间15min。

4.2.1 定性燃气微小泄漏测试

通过使厨房灶具连接管与自闭阀接口密封不严. 定性模拟燃气微小泄漏情况, 并采用皂液检测法观测 到微量气泡析出,如图3所示。

图3 灶具连接管处定性模拟燃气微小泄漏

在定性模拟供气系统燃气微小泄漏情形下,对智 能安全阀进行20次管道严密性试验, 经监测数据统 计, 压降值范围在200Pa~260Pa。

严密性试验结束后,压降值均超过合格阈值 30Pa, 严密性试验不合格, 自动执行智能安全阀内置 阀门闭锁并启动预警机制,同时能够通过WEB端系统 平台及移动终端应用(APP/小程序)接收预警信息。 4.2.2 定量燃气微小泄漏测试

采用水膜气泡法在厨房环境中定量模拟燃气微小 泄漏工况(如图4所示),通过观察测定气泡直径D (mm)及其生成频率n/min, 计算泄漏气体累积至厨 房燃气爆炸下限浓度所需的时间。

假设厨房高h=2.8m,面积s=3.5m²,考虑到厨房 内装修和杂物,设定空间有效率γ=0.7,则达到厨房 燃气爆炸下限体积: $V_{\mathbb{H}} = h \times s \times \gamma \times 5\%$

其中,单个气泡体积V_泡(m³):

图4 水膜气泡法定量模拟燃气微小泄漏

$$V_{\text{M}} = \frac{4\pi}{3} \left(\frac{D}{2}\right)^3$$

小时泄漏量 $V(m^3/h)$ 为: $V=n\times V_{n}\times 60$

则爆炸时间天数
$$t$$
(天)为: $t = \frac{V_{\#}}{V \times 24}$

通过设置4种不同直径的水泡以及生成频率、定 量模拟燃气微小泄漏工况,并在相同实验条件下,每 种类型通过智能安全阀进行5次管道严密性试验,监 测并记录相关数据,如表2所示。

根据定量模拟供气系统燃气微小泄漏的数据统 计,压降值越大,达到爆炸下限的时间越短。严密性 试验结束后, 若压降值均超过合格阈值, 则严密性试 验不合格, 系统自动执行智能安全阀内置阀门闭锁操 作,并根据达到爆炸下限时间以及压降值的不同触发 分级预警机制,同时,运维人员能够通过WEB端系统 平台及移动终端应用(APP/小程序)接收预警信息。

通过定性与定量模拟供气系统燃气微小泄漏工 况,在同等实验条件下采用智能安全阀实施管道严密 性试验,结果显示压降值均超过30Pa的合格阈值,判 定严密性试验不合格。该数据验证了设定的严密性试

表2 定量模拟燃气微小泄漏数据统计

序号	气泡直径约 (mm)	速率约 (个气泡/min)	达到爆炸下限时间 约(天)	严密性试验 次数	压降值约 (Pa)
1	3	81	208	5	50 ~ 60
2	3	112	151	5	90 ~ 100
3	4	124	57	5	210 ~ 230
4	6	139	15	5	600 ~ 630

验合格阈值30Pa具备有效识别燃气微小泄漏的能力。

系统应用 5

为验证户内燃气安全智能监测预警系统的实际应 用效果,在某6层居民小区开展实地测试。选取小区 内20根户内燃气立管作为测试对象,在对应立管的户 外引入管段各安装1台智能安全阀,实时监测管道运 行状态,开展数据采集与测试分析工作。

5.1 压力监测

由于用户用气,管道内压力会出现波动。数据采集 过程中,某台智能安全阀监测的管道压力数据如图5所 示。根据系统后台设置, 当管内绝对压力低于100kPa

(可根据实际情况调整)时,系统会触发异常预警, 并能够通过WEB端系统平台及移动终端应用(APP/ 小程序)接收预警信息。

5.2 严密性试验

通过管理系统平台对某智能安全阀下达指令,预 约设定凌晨03:00进行管道严密性试验,合格阈值为 30Pa, 测试时间15min。根据系统监测试验期间采集 60组压力时序数据,第1组压力102.87kPa,第60组压 力102.12kPa,结束后压力下降750Pa,如图6所示。

本次严密性试验结束后压降值超过合格阈值 30Pa, 严密性试验不合格, 自动执行智能安全阀内置 阀门闭锁,同时触发预警机制,运维人员通过WEB端 系统平台及移动终端应用(APP/小程序)接收到预警

图5 压力监测数据

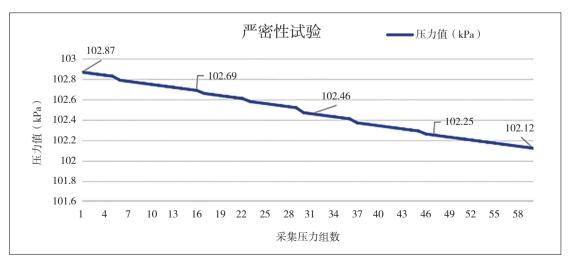


图6 60组压力变化曲线

信息。次日通过现场排查中,发现该立管穿楼板部位 置存在燃气泄漏点,随即完成立管更换作业。

6 结论与建议

本文基于智能安全阀构建了户内燃气安全智能监 测预警系统, 实现了户内燃气管道运行状态的实时监 测与异常预警功能。通过在实训基地供气系统开展实 验测试,将智能安全阀管道严密性试验合格阈值设定 为30Pa, 并将检测时间段优选在凌晨2:00-4:00期 间,此时段具有环境温度波动幅度小、用户日常用气 影响最小的特征。通过定量与定性相结合的微小燃气 泄漏模拟实验,验证了管道严密性试验合格阈值的有 效性。经实际应用场景测试表明,该智能监测预警系 统成功消除了户内燃气立管监测盲区,并有效解决了 空置户燃气泄漏检测难题。

本文构建的基于智能安全阀的户内燃气安全智能 监测预警系统目前仍处于实际应用测试阶段,受限于 智能安全阀内置电子压力传感器精度及实际安装场景 影响,不同设备厂商生产的智能安全阀在进行管道严 密性试验时,其合格阈值需结合电子压力传感器的测 量精度与实际安装工况进行针对性验证与确认。

鉴于冬季燃气壁挂炉用户持续用气行为可能影响 管道严密性试验结果,建议在安装智能安全阀前预先 排查燃气壁挂炉用户情况,对于存在燃气壁挂炉用户 的区域, 应将管道严密性试验调整至非供暖期进行。

在科技不断进步和人工智能算法日益成熟的发展 下,基于智能安全阀的户内燃气安全智能监测预警技 术将趋向于更加精细化和智能化,在居民户内燃气安 全领域的应用前景愈发广阔,通过智慧燃气体系构 建,有效增强户内燃气安全防护能力。

参考文献

[1]尹祥.基于物联网燃气表的户内燃气安全技术[J].煤气 与热力,2019,39(09):8-10+45.

[2]牛富增,赵勇,张彬,等.基于光学燃气报警器的户内燃 气安全管理服务系统[J].化工管理.2019.(34):84-87.

[3]袁涛.基于物联网技术的户内燃气安全管理技术[J].城 市燃气,2020,(11):29-31.

[4]周崇文,杜广,潘虹.基于云平台的户内智能燃气安全 系统设计[J].城市燃气,2023,(06):6-10.

工程信息

我国首个天然气全链条多工况深冷处理厂在川投产

2025年7月3日,从中国石油获悉,我国首个天 然气全链条多工况深冷处理厂在四川全面投产,工 程填补了国内天然气深度处理与高值化利用完整技 术链的空白。

天然气深冷处理是一种利用低温环境对天然气 进行分离、提纯和液化的技术,具有分离效率高、 资源利用率高的特点。盐亭处理厂采用我国自主研 发的超低温深冷技术,一次性产出商品天然气、液态 乙烷、液化石油气等7种产品,每年可处理20亿m3 天然气。

中国石油西南油气田公司盐亭天然气处理厂现 场技术负责人邓晓峰介绍,我们自主研发的一整套 工艺技术流程和核心算法,它让我们的冷量利用效率 和资源综合回收率都达到了95%的行业领先水平。

中国石油西南油气田公司气田开发管理部副主 任范锐表示,这个厂的投产不仅仅增加了一种或几 种化工产品的国产供应, 它验证了一条技术自主可 控的道路, 为我国后续大规模开发同类非常规气 田、构建自主的天然气深冷工艺体系迈出了重要 的一步。

目前, 盐亭处理厂生产的液态乙烷产品已通过 专用运输渠道发往华东、华中地区,将用于高端聚 乙烯和丙烯生产原料。

(本刊通讯员供稿)