doi:10.3969/j.issn.1671-5152.2025.10.002

城燃输配系统运行仿真多场景应用实例

曹喜文,石磊 港华投资有限公司

要: 目前燃气企业的管网里程不断增长, 燃气输配系统的运行也逐步向精细化、智慧化管理转 摘 变。对已建成的燃气设施如何提高运行效率,降低运行成本,以及在极端工况下的应急保 供等方面逐渐得到重视。燃气智慧平台强大的运行数据管理功能,为开展多种场景下的管 网运行仿真模拟提供了数据支撑。本文主要介绍了城燃企业输配系统在运行阶段的各种模 拟场景,阐述其在解决场、网运行问题中的作用,为燃气企业的运行管理由定性决策向定 量决策转变提供可靠的依据。

关键词:运行仿真:供气瓶颈;热值管理;应急保供

概述 1

城燃企业建设智慧燃气运行平台后,需要对包括 GIS、各类用户历史气量、管网参数、运行监控等数 据进行汇总和梳理,这些数据均可为燃气输配系统运 行优化仿真带来数据支撑。

以往通过对燃气企业的管网、场站规划建设进行 各种方案的模拟计算,以判断建设方案的合理性和经 济性。目前,随着城燃市场发展趋缓,管网、场站等 建设逐步减少,对已建成燃气设施的运行优化和供气 风险管控,已逐渐成为各燃气企业的主要关注点。特 别是一些中心城市的燃气企业,管网错综复杂、压力 级别较多,燃气输配系统的运行经常处在临界状态, 抗风险能力较差,需要通过模拟仿真来解决燃气企业 在运行方面的问题。另外,随着上游气源改革的推 进,气源和气价呈现多样化趋势,如何实现气源的合 理调配等问题,均可通过仿真来实现精准判断。现结 合燃气企业的运行需要,分享多种运行工况的模拟 仿真场景案例,为城燃企业场、网运行优化提供一些 解决思路。

城燃管网仿真现状

国内目前使用的管网仿真软件较多,一般分为两 类,一类是侧重高压管网的模拟软件,主要采用示意 图形建模,如SPS、TGNET、SIMONE等;另一类是 偏重于中压管网模拟,可将调控系统中的管网、场站 的大量数据直接导入,并支持地理信息坐标矢量数 据,如Synergi Gas、ProbeGas以及近年国内自研的多 个仿真软件。区别于规划新建阶段的仿真模拟,对已 建管网和场站的模拟仿真, 其目的是解决输配系统运 行中的难点,首先需要对运行现状进行模拟,将模拟 计算的结果和运行调控数据进行比对, 只有模拟结果 与调控系统数据相一致后,才可认定现状模型与现状

[[]第一作者简介] 曹喜文, 总监, 高级工程师, 从事燃气规划、管网仿真及运行优化方面的工作。

实际的输配系统相符,在此基础上,再进行其他各类 运行场景的模拟和分析。而仿真软件的选用也不是一 成不变的, 要根据模拟场景的需要来选用合适的软 件,主要考虑现状、未来、动态、静态4个方面的需求, 有针对性地解决城燃企业在输配系统运行中的痛点。

城燃管网仿真场景实例

3.1 识别已建成管网的输气瓶颈

对已建成管网和气源进行模拟, 在管网模型建立 后,选取气源出站压力、门站和用户流量等历史数 据,将模拟计算结果与用户端的压力监控数据作比较 (见图1),如果存在压力陡升陡降等情况,且两者 数值差异较大,则压力监控点的周边管道可能存在输 气瓶颈。一般为阀门误关或未全开、管道杂质堵塞或 者低点水堵等情况(见图2),在煤气或者液化石油 气混空气改天然气的管道,存在这种情况较多,要通 过后期的排查寻找管网输气瓶颈位置并加以修复。

3.2 管网风险等级按需定义

大型城燃企业的管网规模较大,基本实现了网络 化供气,对于管网的安全管理,主要是以建成年限来 进行分类。将投运时间长的作为主要监护对象,通过 增加泄漏检测频率,设置管网哨兵等措施加强安全运 行管理, 运维成本高昂。通过仿真技术, 可依据失效 影响范围对服役期较长的主供气管道重新分段进行重 要性等级划分,可实现管网安全运行的精细化管理, 有利于企业降低管控成本。

图2 阀门误关管道压力陡降

通过分析管道失效影响范围,对于影响用户数量 多的、不可中断的管道,将其作为供气生命线,加强 管控。对断管后不影响用户用气的管道,可降低维抢 等级,减少管控运行措施成本。某城区主干管道示意 图见图3, 主干管道重要性分段表见表1。

图3 某城区主干管道示意图

图1 中压管网模拟数据与历史监控数据比对

耒1	丰干	管道	重重	性分	- 段表
1X I		6 炬	# 5	エンノ	+X 1

主干管道	流量 (Nm³/h)	受影响 用户数	是否可 中断
德安大道(宝塔)	2 250	85	否
迎宾大道	3 068	93	否
德安大道(城区)	961	69	否
隆平大道	1 145	0	是
渊明大道	1 408	0	是
共安大道	1 559	0	是

3.3 气源的气量平衡和调配

大型燃气企业一般具有多个门站,气源气价各不 相同,而上游气量实行照付不议、严格执行气价标签 化定价的付费政策,对燃气企业的气源调配带来一定 难度。通过对不同门站进行定量输气的模拟仿真,可 精确确定各个气源门站的运行参数,提高气源调配准 确度并降低因输配系统负荷变化产生的运行风险。

以图4为例,某燃气企业在C门站接入LNG码头的 BOG气源后, 因BOG产生量根据船期和季节非常不稳 定,需要经常性调节A和B门站的出站压力,以消纳 BOG气量进入管网。而通过仿真模拟、根据BOG的产 生量快速判断各个门站的运行参数,降低了输配系统 负荷变化产生的运行风险。

3.4 无负荷管网识别和管理

城燃用户用气情况随着城市规划和经济发展一直 在变化,特别是企业外迁会导致原用气高负荷区域气 量下降,已建成的管网负荷降低,部分管道处于虽连 通但已无效状态,特别是20年以上的老旧钢管,受电 化学腐蚀影响较大,运行状况不佳。通过仿真模拟管 网输气负荷,识别无效管段,对无效的管段实行隔离 和封存,并与用户供气需求联动,根据用户气量动态 管理无效管网,可在保证用户供气的前提下,尽量降 低管道运行风险,如图5所示。

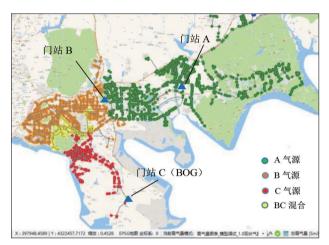


图4 多门站气量调配与供气范围

3.5 多种气源下的热值管理

当存在多种气源情况下,气质组分和热值均不相 同,且差异较大时,通过模拟仿真可追踪不同组分气 源混合后的热值,以判断高、低热值气体在管道混合 后的热值情况以及分布情况,避免低热值燃气对敏感 用户的影响。

图5 无效管段计算分布示意

燃气技术 Gas Technology

图6所示案例位于山东某地,管网气源包括生物 质气、干气、多种管道气等, 生物质气低位热值仅为 31MJ/m3, 可通过模拟管网不同气源混输后的热值分 布,判断对用户影响情况。

另外为应对上中游热值计量改革,减少城燃企业 热值计量的偏差风险,对运行较稳定的管网,可通过 仿真计算不同热值的气源混输后, 到达不同位置用户 处的热值数据,以此作为热值计量结算依据,可避免 用户端热值计量设备的改造。

3.6 管网完善项目建设效用分析

随着城燃企业供气市场发展逐步趋缓,目前新建 管网主要以完善管网、减少供气瓶颈、成环、成网为 主,特别是在目前管网建设具备了一定连通性的情况 下,需要借助仿真技术来验证这些管网完善项目的作 用,避免低效的管道建设投资。如图7和图8所示,对 安徽某地中压管网多个管网完善项目进行模拟,结果 显示,除非为新开发沿途用户供气和老旧改造项目, 在管网建设成规模后,部分管网完善项目对管网整体 运行和供气能力的提升有限。因此可通过仿真模拟供 气效用判断此类项目的建设与否。

3.7 管道泄漏动态影响分析

城燃企业运行的高压管道,一般与上游的长输管 道在运行上存在很大的差异, 主要是运行压力比较 低,管道分输点比较多,管道沿线人员密集地区也较

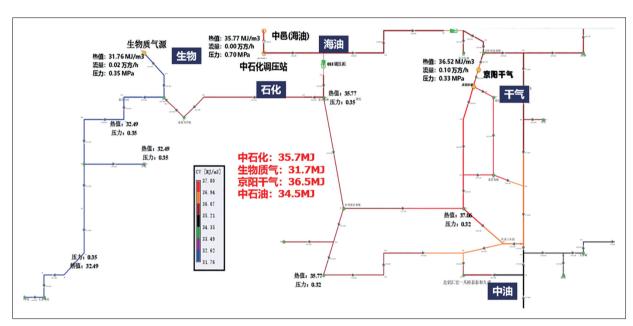


图6 多热值气源混输热值分布模拟示例

图7 中压管网完善项目-成环

图8 中压管网完善项目-成网

多,杂散电流影响较大。对于高后果区或者重点监控 的区域,比如大型河流穿越段等,如果因电化学腐蚀 或者应力撕裂造成泄漏,采用动态模拟可更直观反映 管道事故工况的情况。

如图9模拟湖北某地高压管网发生泄漏,泄漏量 与泄漏面积相关,与形状无关,模拟以规则的孔计 算,实际泄漏一般为不规则形状。模拟的泄漏点压力 从1.18MPa下降到1.14MPa, 压降速率约11kPa/s, 因 管存较大,运行压力较低,门站供气能力强,泄漏造 成的压降速率较小。通过压力的瞬时变化,从泄漏点 两端难以识别发生泄漏事故,也影响气液联动阀关断 参数设定,这也是城燃企业高压管道降低压力运行的 一个痛点。

图9 高压管道泄漏动态模拟

3.8 气源应急保供工况模拟

目前上游气源执行气量的照付不议政策,对于居 民和供暖用户较多的城燃企业,冬季保供压力很大, 一般都会配备大型LNG储备设施、以应对上游管道气 不足时的供气需求。但冬季LNG价格较高,价格倒 挂,需要燃气企业从气源端和用户端等多方面解决应 急保供的问题,包括补气设施及管存的供气极限、可 中断用户停限气时间和气量等,结合极端天气用气量 预测,可为冬供应急方案提供解决思路。

以图10为例, 多个门站的上游气源不同, A和B 气源停气后,及时打开LNG储备库补气,但补气能力 有限,无法满足下游用户的用气需要,高压管网管存 一直处于下降状态,根据模拟测算,在夜间0点输 气压力降至运行最低要求压力,需要启动可中断用 户停气流程。

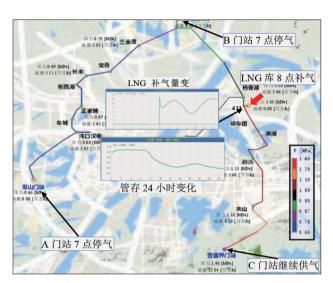


图10 上游限气和补气动态模拟

4 结束语

结合燃气企业在生产运行中的关注点和难点,通 过对各种输配系统运行场景的模拟和分析, 可以为燃 气企业在生产运行中提供科学、准确的决策依据。

城燃企业目前处于行业发展的转型期,安全生产 和运行已成为第一要务,同时又要兼顾降本增效,这 就对企业的输配系统运行管理提出了更高的要求。着 力推进量化决策机制的实施,用数据说话,真正做到 精细化、科学化管理,才能在保障安全运行的前提 下,降低输配系统运行管理成本。

参考文献

[1]王文想.基于管网仿真技术的城市燃气运营管理实践 [J].煤气与热力,2022,42(11):42-46.

[2]翁韦强,刘成良,覃婷婷,等.基于管网仿真的区域管网 联通供气分析实践[J].城市燃气,2025,(01):1-6.

[3]吴岩,刘喆,李灿,等.西气东输系统城市燃气用户负荷 预测[J].油气储运,2021,40(04):386-390.

[4]Martin Stýblo,Vít Meistr.生物甲烷注入热值跟踪计 算[C] PSIG(Pipeline Simulation Interst Group)Annual Meeting, 2024.

[5]步亚冉.输气管网输送能力分析及适应用气量变化的 动态运行优化[D],中国石油大学(北京),2023.