doi:10.3969/j.issn.1671-5152.2025.10.006

中低压调压器的运行压力异常识别

陈 龙、朱宇峰 上海燃气浦东销售有限公司

摘 要: 随着我国燃气行业的快速发展, 中低压调压器作为燃气输配系统的核心组件, 其健康状态 及异常识别对于保障燃气供应的安全稳定具有重要意义。本文基于上海地区中低压调压器 的实际运行数据,结合压力远程监测和人工巡检资料,研究了中低压调压器的运行压力异 常类型与识别方法。通过构建异常检测模型,实现对关闭压力升高和运行压力波动的监测 预警。最终的试验结果表明,该方法能够较好地识别调压器的工况压力异常,为提高调压 器的维护效率和安全性提供了技术支持。

关键词:中低压调压器;异常识别;压力监测;远程监测;关闭压力

1 引言

调压器作为燃气输配系统中的关键设备,负责调 节和稳定系统压力,确保燃气流量的有效控制。为保 证用户用气,调压器几乎长期不间断运行,如果设备 出现故障,不仅影响燃气供应的稳定性,还可能造成 财产损失。因此,对调压器进行状态检测与故障诊断 至关重要。

当前, 越来越多的调压器压力数据已实现实时采 集,但数据利用率较低,预警系统在日常管理中存在 诸多问题, 如数据敏感度不足、监测点位设置不合 理、预警数据利用范围狭窄等。这些问题导致调压器 的维护效率低下,没有发挥出预警监测系统应有的水 准,难以及时发现并处理潜在故障。

本研究旨在通过深入分析调压器的运行压力数 据,构建异常检测模型,实现对调压器异常工况的自 动识别与预警。通过预测性维护策略,提前介入处理 潜在隐患,减少事故发生的概率,提高设备运行的安 全性。同时,为调压器及相关设施的改造、中修、应 急抢修、巡视巡检等工作提供科学依据,保障燃气输 配系统的安全稳定运行。

研究对象与方法

2.1 研究对象

本文以中低压调压器为研究对象, 重点分析其运 行压力数据、巡检故障上报数据等。针对调压器在运 行过程中可能出现的异常类型, 开展深入研究。

表1搜集了调压器在使用中的常见故障类型,主 要分为压力问题和泄漏问题两大类。其中泄漏的检测 需要专门的仪器,通常大型调压站具备安装泄漏报警 器的条件,一般的中低压调压器还是以人巡为主。而 压力的突升、突降问题目前已有比较好的处理方式, 通过设置合适的报警阈值并结合压力的远程监测,可 实现实时报警。因此,本文将讨论的重点放在关闭压 力升高和压力异常波动问题上。

[[]第一作者简介] 陈龙,管线运行管理,从事燃气输配管理、运维数据分析,兼具一线实操与信息化技术融合技能。

研究对象	异常类型	成因	表现		
压力问题			流量为0时,出口压力持续性上升		
	压力异常波动	机械问题、流量不匹配、进口压力波动、信号管取 样点干扰	出口压力频繁上下波动,流量忽大忽小		
	压力突升	流量突降、进口压力突升、大气压突降	出口压力短时间内较大幅度上升		
	压力突降	主路切断、流量突升、进口压力突降、大气压突升	出口压力短时间内较大幅度下降		
泄漏问题	泄漏	部件老化,近期做过拆装,季节变化等	泄漏		

表1 调压器常见异常类型

2.2 研究方法

针对上述调压器运行中的常见问题,将根据现有 条件和不同问题的特点,采用远程监测数据与人工巡 检资料相结合的方式,对调压器的运行状态进行全面 分析。具体步骤包括以下几点。

- (1)数据收集与预处理:收集调压器的运行压 力数据和巡检故障上报数据,进行数据清洗、去噪等 预处理工作,确保数据的准确性和可靠性。
- (2) 异常检测模型构建: 基于预处理后的数 据,构建异常检测模型,识别调压器运行过程中的异 常工况。
- (3)预测性维护策略制定:根据异常检测的识 别结果,制定调压器的维护策略,指导运维人员及时 处置潜在隐患,提高设备维护效率。

调压器异常识别 3

3.1 基于压力监测数据的异常识别

调压器关闭压力升高是巡检作业中最为常见的一 种故障隐患,在正常用气情况下这类隐患并不会显现 出来,此时的调压器与正常情况无异。但当流量趋0 或下游不用气时,则会导致出口压力持续升高,并且 增长率逐渐减小,其典型压力曲线如图1所示。最终 达到的平衡压力会超过实际可接受程度,严重的还会 引起安全切断阀切断,使供气中断。因此关闭压力升 高预示着调压器存在潜在风险,通过识别这类异常, 可以在故障发生前进行人工干预,使调压器恢复健 康状态。

针对关闭压力升高这一问题,本文构建了相应的 异常检测模型。首先基于一阶差商、二阶差商等数学 工具, 计算压力变化率, 然后结合持续时间、涨幅等

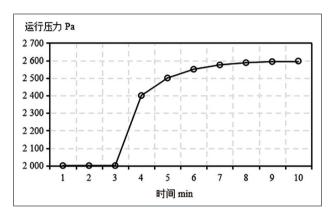


图1 典型关闭压力升高曲线

指标,判断调压器是否存在关闭压力升高异常。具体 指标阈值如下。

- (1) 一阶差商 > 10Pa/min:
- (2) 二阶差商 < 0;
- (3)压力升高持续时间≥15min;
- (4)期间累计涨幅 > 1.2倍。

基于上述异常检测方法, 选取了上海地区2 728台 具有远程监测功能的调压器作为测试样本,对其 2022年1月1日至2024年7月1日的压力数据进行了检 测。实验结果剔除掉数据异常样本后, 共检测到34台 调压器累计774次关闭压力异常情况,其中大多数调 压器仅检测到1次异常状态,为避免偶然性事件,暂 不考虑这类异常频次很低的调压器。最终筛选出表2 中的12台异常频次较高,涨幅较大的调压器。

将实验结果与人工巡检资料做对比,发现其中 8台确实存在关闭压力问题,并且异常频次最高的8号 调压器还出现过超压切断的情况。由此可以看出实验 结果还是相对准确的。

因此,该检测方法配合压力的远程监测功能,能够 较好的识别调压器的关闭压力升高异常工况,并在系统

设备 编号	检测异常 频次	实际巡检 情况	平均初始压力 (Pa)	平均结束压力 (Pa)	平均持续时间 (min)	平均上涨 幅度
1	3	/	2 249	2 724	15	21.1%
2	3	/	1 877	2 418	24	28.8%
3	3	异常	2 657	3 222	16	21.3%
4	8	异常	2 301	2 837	24	23.3%
5	25	异常	2 444	2 986	17	22.2%
6	2	异常	2 345	2 964	20	26.4%
7	5	/	3 454	4 383	17	26.9%
8	679	异常	25 101	33 122	27	32.0%
9	3	异常	2 558	3 139	20	22.7%
10	12	异常	2 342	3 158	15	34.8%
11	3	异常	2 063	2 642	16	28.1%
12	5	/	2 542	3 335	17	31.2%

表2 通过异常识别方法检测出的关闭压力异常数量

超压前提前预警,给运维人员提供充足的处置时间。

3.2 运行压力异常波动分析

正常情况下,调压器出口压力会随着大气环境 (气温、大气压)、上游进口压力和下游流量的变化 而变化,但这种变化通常是可预知的且变化率不会很 大。而压力异常波动则表现为出口压力在一定时间内 周期性剧烈波动, 且无法稳定在某一合理范围内, 波 动越剧烈异常越严重,对调压器危害越大。

本文采用每日出口压力的变异系数作为指标值, 它是数据的标准差与平均值的比值, 因此可以反映采 样数据相对其平均水平的离散或波动程度。由于判断 运行压力异常波动需要较高的采样密度,这一指标在 处理高采样密度的大量数据时计算效率较高。

同样基于上述样本,对调压器每日出口压力的波 动情况进行了检测。最终结果根据变异系数的大小进 行分类,结果如图2所示。

可以看出大部分时间内出口压力波动程度并不算 大,变异系数在10%以上的时长占比为5.5%,其中大 于20%的时间仅占0.6%。这与实际情况一致,绝大部 分设备的运行压力都在正常范围内,需要重点关注的 是那部分占比很小但波动很大的调压器。

为了进一步了解导致压力波动的具体情况,这里 从波动最大的部分,也就是占比0.6%的样本中,抽取 部分样本观察出口压力变化趋势,如图3、4所示,发 现这部分调压器基本属于两种情况:一是已经停用, 压力在0附近波动(图3);二是由于传感器故障导致

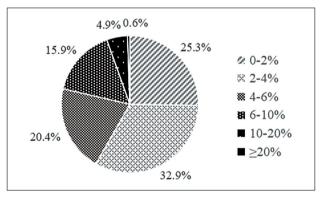


图2 调压器出口压力的变异系数分布



图3 已停用调压器的压力波动曲线

的数据质量问题(图4)。

进一步考察变异系数位于10%~20%区间内的样 本,也就是图2中占比4.9%的部分,其典型压力波动 趋势如图5所示。这部分调压器基本上属于正常运行状 态,但因下游用气工况变化,导致短时间内波动较大。

上述分析是从时间维度,考察调压器的运行压力 在不同变异系数下的波动特点,主要侧重从总体角度 判断压力变化趋势, 检测压力波动异常的时段。

下面将聚焦于具体的设备,考察样本中每台调压 器的运行压力波动位于不同变异系数区间的分布情 况。由于设备数量较多,下面仅筛选部分压力波动较

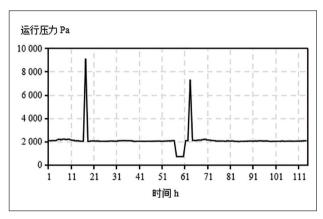


图4 传感器异常调压器的压力波动曲线

大的调压器(共21台),这部分调压器的特点是大部 分时间内其出口压力运行在变异系数较大的区间内, 如图6所示,为了便于对比不同年份运行工况的变化 情况,分别对每台设备2022年和2023年每日出口压力 的变异系数分布进行了统计。

通过对比可以发现,最后3台调压器2023年相比 2022年的工况变化比较大。在2022年时,其大部分时 间内运行压力的变异系数在6%以内,说明运行压力 非常稳定,而到了2023年,变异系数在20%以上的时 间明显增加,运行压力变得非常不稳定。

出现类似以上这种情况则需要重点检查设备的运

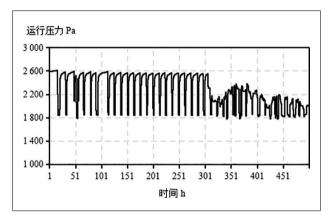


图5 变异系数10%~20%的压力波动曲线

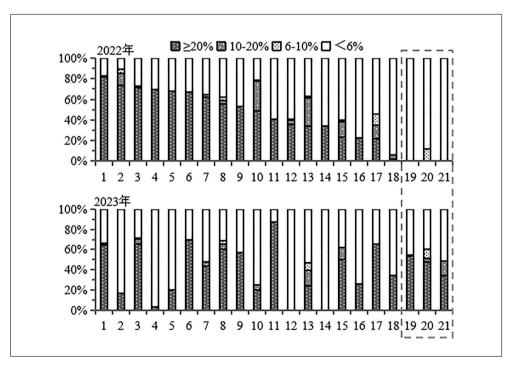


图6 部分调压器2022年与2023年运行压力波动对比

行状态是否正常。为此,结合人工巡检资料发现: 19号调压器在2023年3月—10月期间停用; 20号调压 器于2023年3月起停用; 21号调压器2023年4月更换 压力表后,引起压力传感器异常,导致监测数据波 动变大。

4 结论与展望

本文通过分析中低压调压器的运行压力数据和巡 检故障上报数据,构建了关闭压力升高异常检测模 型,实现了对调压器运行状态的实时监测与预警。研 究结果表明,算法模型能够较好地识别调压器的工况 异常,为运维人员提供充足的处置时间。同时,为制 定针对性的巡检计划提供依据。

此外,本文还对调压器的压力异常波动问题进行 了分析。通过计算每日压力波动的变异系数等统计指 标,判断调压器运行压力是否存在异常波动。结果表 明,大部分时间内调压器的压力波动程度并不算大, 但仍有部分调压器存在异常波动的情况。对于这部分 调压器,需要进一步检查是否存在传感器故障、停 用、工况异常等问题,并及时进行维护。考虑到引起 压力异常波动的原因较为复杂, 涉及机械问题、流量 不匹配问题、信号管取样点干扰等多种因素,因此本 文仅对异常波动进行了初步甄别,未来需进一步结合 其他监测数据进行深入分析。

未来工作将进一步优化算法模型,提高异常识别 的准确性和效率。同时,探索更多智能化维护手段在 调压器管理中的应用,如利用物联网技术实现远程监 控和故障诊断等。此外,还将加强对调压器健康状态 的长期跟踪和评估,为调压器的改造、中修和更新提 供决策支持。

参考文献

[1]杨永美.燃气调压器预警系统在燃气调压器科学管理 中的应用[J].上海煤气,2014,(03):14-16.

[2]高杰,金鑫,武国兵.中低压燃气调压器智能预警技术 应用与优化[J].化学工程与装备, 2023,(07):71-73.

[3]常磊,田申,曹森,等.城镇燃气调压器故障诊断系统设 计与应用[J].自动化与仪器仪表,2020,(09):178-181.

[4]李夏喜,王嵩梅,雷岩,等.浅谈智能化燃气调压器故障 监测及判别系统实现及管理分析[J].电子元器件与信息 技术,2019,3(09):96-98.

安全管理信息

浙江杭州:燃气安全线守护百姓"生命线"

燃气安全事关千家万户,是城市运行的重要生 命线。2025年9月1日获悉,近日,随着桂花城小区 燃气地下管网更新改造完成并投运,杭州2025年 第一批小区地下老旧燃气管道改造任务已基本完 成,进一步消除了安全隐患,提升了燃气管网本 质安全水平。

据悉, 杭州在2023年制定了"三年行动计划", 2024年年底完成杭州主城区393个小区(396.6km) 的老旧管道、92条市政道路(24km)老旧管道更 新改造任务。

2024年10月, 杭州确定2025年共计40个小区庭 院管更新改造项目,目前已基本完成;2025年6月,

杭州又增补了23个小区庭院管更新改造项目,截 至目前基本实现任务过半。

(本刊通讯员供稿)