燃气调压器的健康状况直接关系到燃气输配系统的稳定和安全运行,针对调压器的故障识别,需要大量的专家经验,且给燃气企业带来较大的运维成本。本文提出一种基于多尺度一维卷积神经网络(M1DCNN)的燃气调压器故障诊断模型,该模型在一维卷积神经网络的基础上,构建多个不同尺寸卷积核和池化层的通道,分别提取调压器出口压力数据特征信息并进行处理,最后进行特征融合,输出诊断故障类别。实验结果表明,M1DCNN模型能更全面的提取故障特征,有效进行故障识别,实现调压器智能故障诊断。
燃气调压器;CNN;多尺度特征提取;故障诊断
《城市燃气》杂志社有限公司 地 址:北京市海淀区彰化路33号 电 话:(010)59513339 广告部:(010)59513339 发行部:(010)59513329 59513339 订阅电话:13661348526 订阅QQ:104633009